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Chapter 1 Vector Analysis
1.1 Vector Algebra:  1.1.1 Vector Operations (I)

Vectors: Quantities have both magnitude and direction, 
denoted by boldface (A, B, and so on). 

Scalars: Quantities have magnitude but no direction denoted 
by ordinary type. 

In diagrams, vectors are denoted by arrows: the length of 
the arrow is proportional to the magnitude of the vector, 
and the arrowhead indicates its direction. 

Minus A (-A) is a vector with the same magnitude as A but 
of opposite direction.

Vectors have magnitude and direction but not location.
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1.1.1 Vector Operations (II)

(i) Addition of two vectors: 

Place the tail of B at the head of A. 

Commutative: A+B=B+A
Associative: (A+B)+C=A+(B+C)

A-B=A+(-B)

A+B
B+AA

B

B

A A

-B

A-B
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1.1.1 Vector Operations (III)

(ii) Multiplication by a scalar: 
Multiplies the magnitude but leaves the direction unchanged.

Distributive:   (A+B)=   A+   B    a a a

(iii) Dot product of two vector (scalar product): 
The dot product of two vectors is defined by A·B≡AB cosθ,

where θ is the angle they form when placed tail-to-tail.

A

B

θ

Commutative:   A·B=B·A

Distributive:   A·(B+C)=A·B+A·C
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1.1.1 Vector Operations (IV)

(iv) Cross product of two vector (vector product): 
The cross product of two vectors is defined by 

A×B≡AB sinθ ,      where    is a unit vector pointing 
perpendicular to the plane of A and B. 

A hat is used to designate the unit vector and its direction is 
determined by the right-hand rule. 

A

B

θnot commutative:   A×B=-B×A

Distributive:   A×(B+C)=A×B+A×C

n̂ n̂
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1.1.2 Vector Algebra: Component form (I)

Let       be unit vectors parallel to the x, y, and z 
axes, respectively. An arbitrary vector A can be expressed in 
terms of these basis vectors.

The numbers Ax, Ay, and Az are called components.  

ẑ and ŷ ,x̂

ẑŷx̂ zyx AAA ++=A
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1.1.2 Vector Algebra: Component form (II)

Reformulate the four vector operations as a rule for 
manipulating components:  

ẑ)(ŷ)(x̂)(

)ẑŷx̂()ẑŷx̂(

zzyyxx

zyxzyx

BABABA
BBBAAA

+++++=

+++++=+BA
(i) To add vectors, add like components.   

(ii) To multiply by a scalar, multiply each component.   

ẑŷx̂

)ẑŷx̂(

zyx

zyx

aAaAaA
AAAaa

++=

++=A
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1.1.2 Vector Algebra: Component form (III)

zzyyxx

zyxzyx

BABABA
BBBAAA

++=

++⋅++=⋅ )ẑŷx̂()ẑŷx̂(BA

(iii) To calculate the dot product, multiply like components, 
and add.   

(iv) To calculate the cross product, form the determinant 
whose first row is                    , whose second row is A
(in component form), and whose third row is B.     

ẑ)(
ŷ)(
x̂)(   ẑŷx̂

xyyx

zxxz

yzzy

zyx

zyx

BABA
BABA
BABA

BBB
AAA

−+
−+
−

==×BA

ẑ and ŷ ,x̂
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1.1.3 Triple Products (I)

)()()( BACACBCBA ×⋅=×⋅=×⋅

Since the cross product of two vectors is itself a vector, it 
can be dotted or crossed with a third vector to form a 
triple product.

(i) Scalar triple product: A·(B×C). Geometrically,                      
|A·(B×C)| is the volume of a parallelepiped generated by 
these three vectors as shown below.     

In component form    

zyx

zyx

zyx

CCC
BBB
AAA

=×⋅ )( CBA
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1.1.3 Triple Products (II)

)()()( BACCABCBA ⋅−⋅=××

(ii) Vector triple product: A×(B×C). The vector triple 
product can be simplified by the so-called BAC-CAB
rule.     

Notice that     

)()()()( CABCBABACCBA ⋅+⋅−=××−=××

)()( CBACBA ××≠××

Problem 1.6 Under what conditions does 

?)()( CBACBA ××=××
Ans: Either A is parallel to C, 

or B is perpendicular to A and C 10

1.1.4 Position, Displacement, and Separation 
Vectors (I)

zyxr ˆˆˆ zyx ++≡

Position vector: The vector to that point from the origin.   

Its magnitude (the distance from the origin)   

Its direction unit vector (pointing radially outward) 

222 zyxr ++≡⋅= rr

222

ˆˆˆˆ
zyx
zyx

r ++

++
==

zyxrr

The infinitesimal displacement vector, from (x, y, z) 
to (x+dx, y+dy, z+dz), is   

zyxl ˆˆˆ dzdydxd ++=
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1.1.4 Position, Displacement, and Separation 
Vectors (II)

rr
rrrr

rrrr

′−
′−

==′

′−=′−≡

r

r
rr

r

ˆ  is   to formdirection  in ther unit vecto

 magnitude ,

In electrodynamics one frequently encounters problems 
involving two points:

A source point, r′, where an electric field is located 
A field point, r, at which you are calculating the electric field

A short-hand notation for the 
separation vector from the source 
point to the field point is   
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1.2 Differential Calculus  
1.2.1 “Ordinary” Derivatives

Suppose we have a function of 
one variable, f(x). What does the 
derivative, df/dx, do for us?

In words, if we change x by an amount dx, then, f changes 
by an amount df.

The derivative df/dx is the slope of the graph of f versus x.

Ans: It tells us how rapidly the function f(x) varies when we 
change the argument x by a tiny amount, dx.

dx
dx
dfdf 






=
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1.2.2 Gradient (I)

Suppose we have a function of three 
variables. What does the derivative 
mean in this case?

The gradient of H is a vector quantity, with three components.

A theorem on partial derivatives states that  

)()(

)ˆˆˆ()ˆˆˆ(

l

zyxzyx

dH

dzdydx
z
H

y
H

x
H

dz
z
Hdy

y
Hdx

x
HdH

⋅∇=

++⋅
∂
∂

+
∂
∂

+
∂
∂

=

∂
∂

+
∂
∂

+
∂
∂

=

),,(
hillmountain A 

zyxH

zyx ˆˆˆ
z
H

y
H

x
HH

∂
∂

+
∂
∂

+
∂
∂

=∇
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1.2.2 Gradient (II)

Geometrical interpretation: Like any vector, the gradient 
has magnitude and direction. 

A dot product in abstract form is: 

The gradient ∇H points in the direction of maximum 
increase of the function H.

Analogous to the derivative of one variable, a vanishing 
derivative signals a maximum, a minimum, or an inflection.

θcosll dHdHdH ∇=⋅∇=
. and between  angle  theis  where ldH∇θ
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Example 1.3 & Problem 1.13

Example 1.3 Find the gradient of  

Problem 1.13 Let                                                          
Show that

222 zyxr ++=

rrzyxzyx ˆˆˆˆˆˆˆ  :Ans
222

==
++

++
=

∂
∂

+
∂
∂

+
∂
∂

=∇
rzyx

zyx
z
r

y
r

x
rr

zyx ˆ)'(ˆ)'(ˆ)'( zzyyxx −+−+−≡r

? (a) 2 =∇r
r2ˆ)'(2ˆ)'(2ˆ)'(2

])'()'()'[( 2222

=−+−+−=
−+−+−∇=∇

zyx zzyyxx
zzyyxxr

?)1( (b) =∇ r

2
3

2
1

222

222

2

ˆ/]ˆ)'(2ˆ)'(2ˆ)'(2[

)'()'()'(
)'()'()'(

r
r

r
r

r
−=−+−+−−=

−+−+−
−+−+−∇−

=
∇−

=

zyx zzyyxx

zzyyxx
zzyyxx
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1.2.3 The Operator ∇ (I)

The gradient has the formal appearance of a vector, ∇, 
“multiplying”, a scalar H.

∇ mimics the behavior of an ordinary vector in virtually 
every way, if we translate “multiply” by “act upon”.

It is a marvelous piece of notational simplification. 

del
H

zyx
H )ˆˆˆ(

∂
∂

+
∂
∂

+
∂
∂

=∇ zyx

∇ is a vector operator that acts upon H, not a vector that 
multiplies H.

zyx ∂
∂

+
∂
∂

+
∂
∂

=∇ zyx ˆˆˆ
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1.2.3 The Operator ∇ (II)

An ordinary vector A can be multiply in three ways:

1. Multiply a scalar a : aA
2. Multiply another vector (dot product): A·B
3. Multiply another vector (cross product): A×B

1. On a scalar function H: ∇H (Gradient 梯度)

2. On a vector function (dot product): ∇·v (divergence 散度)

3. On a vector function (cross product): ∇× v (curl 旋度)

Correspondingly, there are three ways the operator ∇ can act:

18

1.2.4 The Divergence 

Divergence of a vector v is: 

∇·v is a measure of how much the vector v spread out 
from the point in question.

z
v

y
v

x
v

vvv
zyx

zyx

zyx

∂
∂

+
∂

∂
+

∂
∂

=

++⋅
∂
∂

+
∂
∂

+
∂
∂

=⋅∇ )ˆˆˆ()ˆˆˆ( zyxzyxv

zero positivepositive
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Example 1.4

.100

,0100

,3  :Ans

=
∂
∂

+
∂
∂

+
∂
∂

=⋅∇

=
∂
∂

+
∂
∂

+
∂
∂

=⋅∇

=
∂
∂

+
∂
∂

+
∂
∂

=⋅∇

z
z

yx

zyx

z
z

y
y

x
x

c

b

a

v

v

v

Example 1.4 Suppose the functions in above three figures 
are                                                             Calculate their 
divergences.

.ˆ   ,ˆ   ,ˆˆˆ zvzvzyxv zzyx cba ==++=
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1.2.5 The Curl 

Curl of a vector v is: 

∇×v is a measure of how much the vector v curl around 
the point in question.

)(ˆ)(ˆ)(ˆ

ˆˆˆ

y
v

x
v

x
v

z
v

z
v

y
v
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xyzxyz
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Example 1.5

Example 1.5 Suppose the functions in above two figures 
are                                             Calculate their curls.yvyxv ˆ   ,ˆˆ xxy ba =+−=

zzyxv

zzyxv
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1.2.6 Product Rules (I) 

The sum rule: 

The rule for multiplying by a constant:

dx
dfkkf

dx
d

=)( fkkf ∇=∇ )(

AA ×∇=×∇ kk )(AA ⋅∇=⋅∇ kk )(

dx
dg

dx
dfgf

dx
d

+=+ )( gfgf ∇+∇=+∇ )(

BABA ×∇+×∇=+×∇ )(BABA ⋅∇+⋅∇=+⋅∇ )(
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1.2.6 Product Rules (II) 

The product rule: 

ABBAABBABA )()()()()( ∇⋅+∇⋅+×∇×+×∇×=⋅∇

)()()()()( ABBABAABBA ⋅∇−⋅∇+∇⋅−∇⋅=××∇

)()()( BAABBA ×∇⋅−×∇⋅=×⋅∇





Af
fg

 :vector
 :scalar





×
⋅

BA
BA

 :vector
 :scalar

dx
dgf

dx
dfgfg

dx
d

+=)( gffgfg ∇+∇=∇ )(

)()( AAA ×∇+×∇=×∇ fff)()( AAA ⋅∇+⋅∇=⋅∇ fff

Chaps. 
8 and 10
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1.2.6 Product Rules (III) 

The quotient rule: 





gg
f A :vector :scalar

2)(
g

dx
dgf

dx
dfg

g
f

dx
d −

=

2)(
g

gffg
g
f ∇−∇

=∇
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)()()()(
g

gg
g

gg
g

∇×+×∇
=

×∇−×∇
=×∇

AAAAA

2

)()(
g

gg
g

∇⋅−⋅∇
=⋅∇

AAA
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1.2.7 Second Derivatives (I) 

By applying ∇ twice, we can construct five species of 
second derivatives.

)( :gradient of Divergence )1( T∇⋅∇

vv ×∇⋅∇∇    ,   ,  sderivativefirst  Three T

)( :gradient of Curl )2( T∇×∇

)( :divergence ofGradient  )3( v⋅∇∇

)( :curl of Divergence )4( v×∇⋅∇

)( :curl of Curl )5( v×∇×∇

Chaps. 8 and 10

very important 

always zero

always zero

reduce to others
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1.2.7 Second Derivatives (II) 

The Laplacian of a vector is similar:

T
z
T

y
T

x
T

z
T

y
T

x
T
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T

2
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the Laplacian of T

zyxzyx vvvvvv 2222 ˆˆˆ)ˆˆˆ()( ∇+∇+∇=++∇≡∇⋅∇ zyxzyxv

The proof hinges on the equality of cross derivatives:
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1.2.7 Second Derivatives (III) 

0
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Can we use the following vector identity?)( )5( v×∇×∇

)()()( CABCBABAC ⋅−⋅=××

We will encounter this derivative when dealing with 
the vector potential (magnetism).

28

1.3 Integral Calculus  
1.3.1 Line, Surface, and Volume (I)

In electrodynamics, the line (or path) integrals, surface
integrals (or flux), and volume integrals are the most 
important integrals.

∫ ⋅
b

a
lv

P
,d

(a) Line integrals: a line integral is an expression of the 
form

Where v is a vector function, dl is the infinitesimal 
displacement vector, and the integral is to be carried out 
along a prescribed path P from point a to point b.

Put a circle on the integral, in the path in question 
forms a closed loop. 

∫ ⋅ lv d
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1.3.1 Line, Surface, and Volume (II)
The value of a line integral depends critically on the 
particular path taken from a to b, but there is an important 
special class of vector functions for which the line integral 
is independent of the path, and is determined entirely 
by the end points, e.g. 

∫ ⋅=
b

a
lF

P
dW

A force that has this property is called conservative.
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Example 1.6 Calculate the line integral of the function         

from the point a=(1,1,0) to the point 
b=(2,2,0), along the paths (1) and (2) in Fig.1.21. What is  
the loop integral that goes from a to b along (1) and 
returns to a along (2)?

,ˆ)1(2ˆ2 yxv ++= yxy

The strategy here is to get everything in 
terms of one variable.
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1.3.1 Line, Surface, and Volume (III)

∫ ⋅
S

,av d

(b) Surface integrals: a line integral is an expression of 
the form

where v is a vector function, and da is 
the infinitesimal patch of area, with 
direction perpendicular to the surface. 

The value of a surface integral depends on the particular 
surface chosen, but there is a special class of vector 
functions for which it is independent of the surface, and is 
determined entirely by the boundary.
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Example 1.7 Calculate the surface integral of the function         

over five sides of the 
cubical box. Let ”upward and outward” be the positive 
direction, as indicated by the arrow.

zyxv ˆ)3(ˆ)2(ˆ2 2 −+++= zyxxz

∫ ∫∫ ==⋅

==⋅==

164

42    ,ˆ  ,2 )1(
: timeaat  one sides  theTaking :Sol 

2

0

2

0
zdzdyd

zdydzxzdydzddydzdx
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avxa

∫ ∫∫ ==⋅

=−=⋅==

4

)3(    ,ˆ  ,2 )5(
2

0

2

0

2

ydydxd

ydxdydxdyzyddxdydz
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avza
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1.3.1 Line, Surface, and Volume (IV)

∫v ,τTd

(c) Volume integrals: a line integral is an expression of 
the form

where T is a scalar function, and dτ is an infinitesimal 
volume element. In Cartesian coordinates, dτ=dxdydz

The volume integrals of vector functions:

For example, if T is a density of a substance, then the 
volume integral would give the total mass.

∫∫∫
∫∫

++=

++=

τττ

ττ

dvdvdv

dvvvd

zyx

zyx

zyx

zyxv

ˆˆˆ

)ˆˆˆ(
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Example 1.8 Calculate the volume integral of the function         

over the prism in Fig. 1.24.2xyzT =

{ }

8
3)

12
1)(
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1.  to0 fromfinally x  
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35

1.3.2 The Fundamental Theorem of Calculus
Fundamental theorem of calculus: 

Geometrical Interpretation: two ways to determine the total 
change in the function:
1. go step-by-step adding up all the tiny increments as you go
2. subtract the values at the ends.

The integral of a derivative over an interval is given by the 
value of the function at the end points (boundary).

)()( afbfdfdx
dx
df b

a

b

a
−== ∫∫

36

1.3.3 The Fundamental Theorem for Gradients
A scalar function of three variables T(x, y, z) changes by 
a small amount. 

The total change in T in going from a to b along the path 
selected is: 

1)( ldTdT ⋅∇=

)()()( abl
b

a
TTdT −=⋅∇∫

Fundamental theorem for gradient.

Geometrical Interpretation: Measure the high of a skyscraper. 
1. Measure the high of each floor and add them all up.
2. Place an altimeter at the top and the bottom, subtract the 
readings at the ends.
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1.3.3 The Fundamental Theorem for Gradients (II)

the right side of this equation makes 
no reference to the path---only to the end points.  
Thus gradients have special property that their line integrals 
are path independent.  

A conservative force may be associated with a scalar 
potential energy function, whereas a non-conservative 
force cannot.

)()()( abl
b

a
TTdT −=⋅∇∫

Corollary 1:                      is independent of path taken from 
a to b.  

Corollary 2:                         , since the beginning and end 
points are identical, and hence T(b)-T(a)=0. 

∫ ⋅∇
b

a
ldT )(

0)( =⋅∇∫ ldT
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Potential Energy and Conservative Forces

Potential energy defined in terms of work done by the 
associated conservative force.

*Conservative forces tend to minimize the potential 
energy within any system: It allowed to, an apple falls 
to the ground and a spring returns to its natural length.

sF dUU
B

A cAB ⋅−=− ∫

Non-conservative force does not imply it is dissipative, 
for example, magnetic force, and also does not mean it 
will decrease the potential energy, such as hand force.
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Distinction Between 
Conservative and Non-conservative Forces

sF dUU
B

A cAB ⋅−=− ∫

The distinction between conservative and non-
conservative forces is best stated as follows: 

A conservative force may be associated with a scalar 
potential energy function, whereas a non-conservative 
force cannot.

Uc −∇=F
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Conservative Force and 
Potential Energy Function

Uc −∇=F

How can we find a conservative force if the associated 
potential energy function is given?

A conservative force can be derived from a scalar 
potential energy function.

The negative sign indicates that the force points in the 
direction of decreasing potential energy.

kx
dx

dU
FkxU

mg
dy

dU
FmgyU

sp
xsp

g
yg

−=−==

−=−==

;
2
1
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  Gravity
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1.3.4 The Fundamental Theorem for Divergences
The fundamental theorem for divergences states that:

The integration of a derivative (in this case the divergence) 
over a region (in this case a volume) is equal to the value of 
the function at the boundary (in this case the surface that 
bounds the volume)

∫∫ ⋅=⋅∇
S

v
dd avv τ)(

This theorem has at least three special names: Gauss’s 
theorem, Green’s theorem, or the divergence theorem.

Geometrical Interpretation: Measure the total amount of 
fluid passing out through the surface, per unit time. 
1. Count up all the faucets, recording how much each put out.
2. Go around the boundary, measuring the flow at each point, 
and add it all up. 42

Gauss’s divergence theorem
(Transformation between volume integrals and surface integrals)

ˆ( )
v

S
d daτ∇ ⋅ = ⋅∫ ∫v v n

Supplementary

Rough
proof:
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x y zv v v

x y
z

α β γ

α β γ

= + + = + +v x y z n x y z

n

( ) ( )

( )

( cos cos cos )

ˆ

yx z
v

v

x y z
S

x y z
S

S

vv vd dxdydz
x y z

v dydz v dzdx v dxdy

v v v da

da

τ

α β γ

∂∂ ∂
∇ ⋅ = + +

∂ ∂ ∂

= + +

= + +

= ⋅

∫ ∫∫∫

∫∫

∫∫

∫∫

v

v n
Rigorous proof can be found in: Erwin Kreyszig, Advanced 
Engineering Mathematics (John Wiley and Sons, New 
York, 1993), 7th ed. Chap. 9, pp. 546-547.
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Example 1.10 Check the divergence theorem using the 
function      

and the unit cube situated at the origin.
zyxv ˆ)2(ˆ)2(ˆ 22 yzzxyy +++=

∫
∫ ∫∫

∫ ∫ ∫∫

=⋅∇∴

=+=+=

+=+

+=⋅∇

v

v

d

dyydyy

dxdyyxdzdxdydzyx

yx

2

2)(2)(2

)(2)(2

)(2 case In this :Sol

1

0

1

0 2
1

1

0 2
1

1

0

1

0

1

0

τv

v

To evaluate the surface integral we must consider 
separately the six sides of the cube. The total flux is…
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1.3.5 The Fundamental Theorem for Curls (I)
The fundamental theorem for curls---Stokes’ theorem---
states that:

The integration of a derivative (here, the curl) over a region 
(here, a patch of surface) is equal to the value of the 
function at the boundary (in this case the perimeter of the 
patch).

∫∫ ⋅=⋅×∇
P

S
dd lvav)(

Geometrical Interpretation: 
Measure the “twist” of the 
vectors v; a region of high 
curl is a whirlpool. 
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1.3.5 The Fundamental Theorem for Curls (II)
Ambiguity in Stokes’ theorem: Concerning the boundary 
line integral, which way are we supposed to go around 
(clockwise or counterclockwise)? The right-hand rule.

Corollary 1:                      depends only on the boundary 
lines, not on the particular surface used.   

Corollary 2:                            for any closed surface, since 
the boundary line shrinks down to a point. 

av d⋅×∇∫ )(

0)( =⋅×∇∫ av d

These corollaries are analogous to 
those for the gradient theorem.
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Stokes’ theorem
(Transformation between surface integrals and line integrals)

Supplementary

Rigorous proof can be found in: 
Erwin Kreyszig, Advanced Engineering Mathematics 
(John Wiley and Sons, New York, 1993), 
7th ed. Chap. 9, pp. 556-559.

∫∫ ⋅=⋅×∇
P

S
dd lvav)(
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Comments: graduate level (reference only)

• Green’s theorems: 
2

2

2 2

Let     ( )
ˆ ˆ( )

Green's first formula: ( )

Green's second formula: ( ) ( )

v
S

v
S

f g f g f g f g
f g

gf g f g d f da
n

g ff g g f d f g da
n n

τ

τ

= ∇ ⇒ ∇⋅ = ∇ ⋅ ∇ = ∇ +∇ ⋅∇
⋅ = ⋅∇

∂
∇ +∇ ⋅∇ =

∂

∂ ∂
∇ − ∇ = −

∂ ∂

∫ ∫

∫ ∫

v v
v n n

• Green’s theorem in the plane as a special case of 

Stokes’ theorem

Let  be a vector function in the -plane.

ˆ( )       ( ) ( )y yx x
x y

S P

xy
v vv v da v dx v dy
x y x y

∂ ∂∂ ∂
∇× ⋅ = − ⇒ − = +

∂ ∂ ∂ ∂∫∫ ∫

v

v n
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Example 1.11 Suppose      

Check Stokes’ theorem for the square surface shown below.

zyv ˆ)4(ˆ)32( 22 yzyxz ++=

∫ ∫∫ ==⋅×∇

=+−=×∇
1

0

1

0

2

2

3
44)(

ˆ    ;ˆ2ˆ)24( :Sol 

dydzzd

dydzdzxz

av

xazxv

segmentsfour   theof integral line The
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1.3.6 Integration by Parts

b

a

b

a

b
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b

a

b

a

b
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b
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fg

dx
dx
dfgdx
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dx
dx
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dx
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dx
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=
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∫ ∫
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∫∫∫

∫∫
∫
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⋅∇+⋅∇=

⋅∇+⋅∇

⋅=⋅∇
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dfdfdf
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)()()(

)()(

))((Right 
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)()(

ττ

ττ

τ

τ

not a rigorous prove
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Homework #1  

Problems:  1.5,   1.7,  1.13,  1.16,  1.32, 
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1.4 Curvilinear Coordinates  
1.4.1 Spherical Polar Coordinates (I)

The spherical (polar) coordinates (r, θ, φ) of a point P are 
defined below;
r: the distance from the origin (the magnitude of the 
position vector).
θ: the angle down from the z-axis (called polar angle).
φ: The angle around from the x-axis (call the azimuthal 
angle).









=
=
=

θ
φθ
φθ

cos
sinsin
cossin

rz
ry
rx

Murray R Spiegel, Vector Analysis
(McFRAW-Hill, New York, 1989), 6th ed. Chap. 7. 53

1.4.1 Spherical Polar Coordinates (II)

The direction of the coordinates: the unit vector

They constitute an orthogonal (mutually perpendicular) 
basis set (just like             ). 

So any vector A can be expressed in terms of them: 

φθ ˆ ,ˆ ,r̂

zyx ˆ ,ˆ ,ˆ

r unit vectoCartesian  of In terms

ˆˆˆ φθ φθ AAAr ++= rA
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1.4.1 Spherical Polar Coordinates (III)

Warning: are associated with particular point P,  
and they change direction as P moves around.
For example,     always points radially outward, but “radially 
outward” can be the x direction, the y direction, or any other 
direction, depending on where you are.

φθ ˆ ,ˆ ,r̂

r̂

Notice: Since the unit vectors are function of position, we 
must handle the differential and integral with care.

1. Differentiate a vector that is expressed in spherical 
coordinates.

2. Do not take the unit vectors outside an integral. 
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1.4.1 Spherical Polar Coordinates (IV)

φθr ˆsinˆˆ

:ntdisplaceme malinfinitesi general The

φθθ drrddrdl ++=

rra

a

ˆ sinˆ ))((d
sphere. a of

surface for the element  surface malinfinitesi The

2 φθθφθ ddrdldl

d

==

φθθτ

τ

φθ ddrdrdldldld
d

r sin))()((
element   volumemalinfinitesi The

2==
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1.4.1 Spherical Polar Coordinates (V)

The vector derivatives in spherical coordinates:
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1.4.2 Cylindrical Coordinates (I)
The cylindrical coordinates (s, φ, z) of a point P are defined 
below: 
s: the distance from the z axis.
φ: the same meaning as in spherical coordinates.
z: the same as Cartesian.

cos ,    sin ,    x s y s z zφ φ= = =

The unit vectors are 

zφsl ˆˆˆ
:ntdisplaceme malinfinitesi The

dzsddsd ++= φ



58

1.4.2 Cylindrical Coordinates (II)

The vector derivatives in cylindrical coordinates:
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1.5 The Dirac Delta Function  
1.5.1 The Divergence of   

Consider a vector function  2/ˆ rrv =

2/ˆ rr

The divergence of this vector function is:  

0)1(1)1(1
22

2
2 =

∂
∂

=
∂
∂

=⋅∇
rrr

r
rr

v

The surface integral of this function is:  

∫∫ ∫

∫ ∫∫
⋅∇≠==

=⋅

v
ddd

ddr
r

d

τπφθθ

φθθ

π π

π π

)(4sin

)sin1(

0

2

0

0

2

0

2
2

v

av

The divergence theorem is false?

No The Dirac delta function
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1.5.2 The One-Dimensional Dirac Delta Function

The 1-D Dirac delta function can be pictured as 
an infinitely high, infinitesimally narrow “spike”, with area just 1.

∫
∞+

∞
=





=∞
≠

=
-

1)(       with  
0 if
0 if0

)( dxx
x
x

x δδ

Technically, δ(x) is not a function at all, since its value is 
not finite at x=0. Such function is called the generalized 
function, or distribution.
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1.5.2 The One-Dimensional Dirac Delta Function (II)

If f(x) is some “ordinary” function (let’s say that it is 
continuous), then the product f(x)δ(x) is zero everywhere 
except at x=0. It follows that f(x)δ(x)=f(0)δ(x). In particular, 

∫∫
+∞

∞

+∞

∞
==

--
)0()()0()()( fdxxfdxxxf δδ

We can shift the spike from x=0 to some other point x=a. 

∫
∞+

∞
=−





=∞
≠

=−
-

1)(       with  
 if
 if0

)( dxax
ax
ax

ax δδ

A generalized integration equation: 

∫∫
+∞

∞

+∞

∞
==−

--
)()()()()( afdxxafdxaxxf δδ
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1.5.2 The One-Dimensional Dirac Delta Function (III)

Although δ(x) is not a legitimate function, integrals over δ(x)
are perfectly acceptable.

It is best to think of the delta function as something that is 
always intended for use under an integral sign. 

In particular, two expressions involving delta function are 
considered equal if:

).( offunction  )ordinary"(" allfor 

)()()()(
- 2- 1

xf

dxxDxfdxxDxf ∫∫
+∞

∞

+∞

∞
=

Example 1.14 Evaluate the integral    )2( (a)
3

0

3∫ − dxxx δ

∫ −
3

0

3 )4( (b) dxxx δ 63

Example 1.15 Show that       

where k is any (nonzero) constant.

. )( )( and )(1 as purpose same  theserves )( So

)0(1)()/(1)()(

-  to from runsn integratio the:
  to- from runsn integratio the:

1 , that so ,Let 

)()(

),(function test arbitrary an for  integral heConsider t :Sol 
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Prob. 1.45

)())((  a)( xx
dx
dx δδ −=

)( that Show       
0 if   ,0
0 if   ,1

)(             

 :function step  thebe )(Let   )(

xdxd
x
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<
>

=
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1.5.3 The three-Dimensional Dirac Delta Function 

The generalized 3D delta function 

)()()()(3 zyx δδδδ =r
where r is the position vector. It is zero everywhere 
except at (0,0,0), where it blows up. 

Its volume integral is:  

1)()()()(
- - -space all

3 == ∫ ∫ ∫∫
+∞

∞

+∞

∞

+∞

∞
dxdydzzyxdx δδδδ r

)()()(
space all

3 aarr fdxf =−∫ δ

As in the 1-D case, the integral with delta function picks 
out the value of the function at the location of the spike.



66

1.5.3 The three-Dimensional Dirac Delta Function (II) 

We found that the divergence of          is zero everywhere 
except at the origin, and yet its integral over any volume 
containing the origin is a constant of 4π. The Dirac delta 
function can be defined as:

)(4)
ˆ

( 3
2 rr πδ=⋅∇

r
More generally, 

2/ˆ rr

3
2
ˆ( ) 4 ( )πδ∇ ⋅ =
r
r

r
where r is the separation vector r =r-r′. Note that the 
differentiation here is with respect to r, while r′ is held 
constant.

2 3
2

1 1 ˆ( ) ( ( )) ( ) 4 ( )πδ∇ = ∇⋅ ∇ = ∇⋅ − = −
r

r r r
r
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1.6 The Theory of Vector Fields  
1.6.1 The Helmholtz Theorem 

To what extent is a vector function F determined by its 
divergence and curl? 
The divergence of F is a specified scalar function D,

and the curl of F is a specified vector function C,

Can you determine the function F?

D=⋅∇ F

CF =×∇ 0)( =⋅∇=×∇⋅∇ CFwith

Helmholtz theorem guarantees that the field F is uniquely 
determined by the divergence and curl with appropriate 
boundary conditions.
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1.6.2 Potentials (simple example)

If the curl of a vector field (F) vanishes (everywhere), then 
F can be written as the gradient of a scalar potential (V):

V−∇=⇒=×∇ FF          0
conventional

If the divergence of a vector field (F) vanishes (everywhere), 
then F can be expressed as the curl of a vector potential (A):

AFF ×∇=⇒=⋅∇          0
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Homework #2  

Problems:   1.37, 1.39, 1.42, 1.45,  1.48


