Chapter 5 Magnetostatics
5.1 The Lorentz Force Law 5.1.1 Magnetic Fields

By analogy with electrostatics, why don’t we study
magnetostatics first? Due to lack of magnetic monopole.
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Source charges Test charge

If one try to isolate the poles by cutting the magnet, a curious
thing happens: One obtains two magnets. No matter how
thinly the magnet is sliced, each fragment always have two
poles. Even down to the atomic level, no one has found an
isolated magnetic pole, called a monopole. Thus magnetic
field lines form closed loops.

The Magnetic Field

Outside a magnetic the lines emerge from the north pole
and enter the south pole; within the magnet they are
directed from the south pole to the north pole. The dots
represents the tip of an arrow coming toward you. The
cross represents the tail of an arrow moving away.
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How a current-carry wire
produces a magnetic field?

The Magnetic Field of a Bar Magnet
When iron filings are sprinkled around a bar magnet, they
form a characteristic pattern that shows how the influence of
the magnet spreads to the surrounding space.
o
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The magnetic field, B, at a point along the tangent to a field
line. The direction of B is that of the force on the north pole of
a bar magnet, or the direction in which a compass needle
points. The strength of the field is proportional to the number
of lines passing through a unit area normal to the field (flux
density). 3

Definition of the Magnetic Field

When defining of the electric field, the electric field strength
can be derived from the following relation: E=F/q. Since an
isolated pole is not available, the definition of the magnetic
field is not as simple.

Instead, we examine how an electric charge is affected by a
magnetic field. S | :

F=qwBsind=qvxB [

Since F is always perpendicular to v, a magnetic force does
no work on a particle and cannot be used to change its
kinetic energy.

The Sl unit of magnetic field is the Tesla (T). 1 T=10* G




The Lorentz Force Law

When a patrticle is subject to both electric and magnetic
fields in the same region, what is the total force on it?

F = q(E + vxB)

This is called the Lorentz force law. This axiom is found in
experiments.

The magnetic force do no work.

W, = Fp, -l = q(vxB) - vat = 0

Really? But, how do you explain a magnetic crane lifts a
container?

Force on a Current-Carrying Conductor

When a current flows in a magnetic field, the electrons as a
whole acquire a slow drift speed, v,, and experience a
magnetic force, which is then transmitted to the wire.

F =qvBsind = (nAle)v,B

= (nAev,)/B o fa
=1/B — T
. o : |:_.._
F=1/xB
F=1/Bsné@

n: is the number of the conductor per unit volume.

/: is defined to be in the direction in which the current is flowing.
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Force on a Current-Carrying Conductor

The force on an infinitesimal current element is

dF = 1d/xB

The force on a wire is the vector sum (integral) of the forces
on all current elements.

Example:
The Magnetic Force on a Semicircular Loop
A wire is bent into a semicircular loop of radius R. It carries a

current I, and its plane is perpendicular to a uniform magnetic
field B, as shown below. Find the force on the loop.

Solution: oF
dF = 1d/xB g ("
dF, = IRBsing d¢ yalNo; :f)\r
T . ""r :-.1}"/ “'..
= f R \
F, = IRB| 'sin6 do | /4 \
=2IRB=1(2R)B

The x-components of the forces on such elements will
cancel in pairs.

The net force on any close current-carrying loop is zero.
8




The Motion of Charged Particles in Magnetic Fields

How does a charged particle move with an initial velocity v
perpendicular to a uniform magnetic field B?

Since v and B are perpendicular, the particle experiences a
force F=qvB of constant magnitude directed perpendicular.
Under the action of such a force, the particle will move in a

circular path at constant speed. From Newton’s second law,

F=ma, we have

mv mv
qvB = = r=—
r gB

The radius of the orbit is directly proportional to the linear
momentum of the particle and inversely proportional to the
magnetic field strength.

Cyclotron Motion

What are the frequency and the period? Are they independent
of the speed of the particle? Yes.

The period of the orbit is P oo s
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The frequency is called the cyclotron frequency.

All particles with the same charge-to-mass ratio, g/m, have

the same period and cyclotron frequency. 10

Example: Cyclotron

A cyclotron is used to accelerate protons from rest. It has a
radius of 60 cm and a magnetic field of 0.8 T. The potential
difference across the dees is 75 kV. Find: (a) the frequency
of the alternating potential difference; (b) the maximum
kinetic energy; (c) the number of revolutions made by the
protons.

Solution:
- B _
(a) f ——Zmn—leHZ

c

2
) Koo =(qr;i ~1.76x102J=11MeV
m

(c) AK =2qV =150 keV
K e / AK =11000/150 = 73.5 revs.
How to determine the maximum kinetic energy? 1

Helical Motion

What happens if the charged particle’s velocity has not only a
perpendicular component vi but also a parallel component vi/?
Helical Motion.
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The perpendicular component vi gives rise to a force qv.B
that produces circular motion, but the parallel component v
is not affected. The result is the superposition of a uniform
circular motion normal to the lines and a constant motion
along the lines. 12




Example: Cycloid Motion

Suppose, for instance, that B points in the x-direction, and E
in the z-direction. A particle initially at rest is released from the
origin; what path will it follow?

Solution:
1. Write down the equation of motion.

2. Solve the coupled differential equations.
3. Determine the constants using the initial conditions.
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Magnetic Bottle/Mirror

What happens if the magnetic field is not uniform? Energy
transfer between the perpendicular and parallel components.
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In a nonuniform field, the particle experiences a force that
points toward the region of week field. As a result, the
component of the velocity along the B lines is not constant.

If the particle is moving toward the region of stronger field,
as some point it may be stopped and made to reverse the
direction of its travel. i

Velocity Selector

Only those particles with speed v=E/B pass through the
crossed fields undeflected. This provides a convenient way
of either measuring or selecting the velocities of charged

particles.
15

Mass Spectrometer

A mass spectrometer is a device that separates charged
particles, usually ions, according to their charge-to-mass

ratios.
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Example: Mass Spectrometer

In a mass spectrometer shown below, two isotopes of an
elements with mass ml and m2 are accelerated from rest by
a potential difference V. They then enter a uniform B normal
to the magnetic field lines. What is the ratio of the radii of
their paths?

Solution: -5
|

V= fZCI_V LT x'ﬁ._l
m ] II

mv 2mv !
? thenr, /r,=,/(m/m,) /

[ =—=
qB q

Notel: How particle is accelerated by a potential difference?
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Current and Surface Current
The current in a wire is the charge per unit time passing a
given point.
Current is measured in coulombs-per-second, or amperes (A).
1A=1C/s

The surface current density, K, is defined as follows:
consider a "ribbon” of infinitesimal width d/ . running parallel
to the flow. Then, K dI

S de,
In words, K is the current per unit width-perpendicular-to-flow.
d(c? ?,)
d( L™ )
K - dI N dt :O_dﬂ,,zo_v
ds, ds, dt 18

Volume Current Density

The volume current density, J, is defined as follows:
consider a "tube” of infinitesimal cross section da., running
parallel to the flow. Then,

J— dl

da,

In words, J is the current per unit area-perpendicular-to-flow.

d(pa, ’,)
a ) a,

d
J = ~ = =
da, da, P 7Y
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Conservation of Charge

The current crossing a surface Scan be written as

I:.[J-ﬁda
S

In particular, the total charge per unit time leaving a volume
| = gSJ-ﬁda: j(v-J)dr S
S v at

where @Q = ij,odr.

dt  dty

d dp
V-9)dr=—2[pdr =|v.y=-22
J( )dz dti’” - ot

continuity equation 20




5.2 The Biot-Savart Law 5.2.1 Steady Currents

Stationary charges produce electric fields that are constant
in time. Steady currents produce magnetic fields that are
also constant in time.

Stationary charges = constant electric fields; electrostatics.
Steady currents = constant magnetic fields; magnetostatics.

Steady current means that a continuous flow that goes on
forever without change and without charge piling up
anywhere. They represent suitable approximations as long
as the fluctuations are reasonably slow.

vV-J=0

21

5.2.2 The Magnetic Field of a Steady Current

The Biot-Sarvart law:

Ho cIxF o, pl cdl'xP
B(r) =— d'=
(r) 47rJ‘ re 47rJ‘ re

The integration is along the current
path, in the direction of the flow.
Uo: the permeability of free space.

Definition of magnetic field B: newtons per ampere-meter
ortesla(T). 1 T=1N/(A-m)

The Biot-Sarvart law plays a role analogous to Coulomb’s

law in electrostatics.
22

Example 5.5 Find the magnetic field a distance sfrom a long
straight wire carrying a steady current I.

Wire segment

Sol :

Ho (IxF o, gl pdl'xF
B(r)=-*> d'=
() 47z'-[ r? iy I r?
Then, determinethesuitablecoordinate: cylindricd coordinate(s, ¢, z).
In thediagram, (dl' x F) pointsout of pageand havethe magnitude

dl'sna =dl’ coséd
I’=stand = dI’' = ssec’ @ and

1 cosé
r S 23

s

| cdl'xf | 2 cos?d s
B(r) — IUO I > — IUO J‘ .
4z 7 r 4r . §° cos’d

2

Con't
cosgdd

= 4l gnpf, = #o (224107 ) Testa)
4rs - 2rS S

What is the force between two parallel current-carrying wires?
dF = Idl xB

I Fi
dF=|2'uOI1 dl:ﬂolllz dl ! z
27d 2zd d
dF  ulyl,
dl 27zd

1 @
(attractive force per unit length, why?) 24




Example 5.6 Find the magnetic field a
distance z above the center of a circular
loop of radius R, which carries a steady
current I.

J-dl'xr

soi: B(r)=*al =

4
Choose cylindrica coordinate (s, ¢, z).

In the diagram, (dI' x ') sweeps around the z axis,

thus only the z-component survives.
z-component of (dl' x ) = dl’ cosd = Rcosfd¢

i ; and sSnd= R

2 = (R2+ ZZ) (Rz N Z2)1/2

25

The Bio-Sarvart Law
for the Surface and Volume Current

| cdl'xF
The Biot-Sarvart law: B(r) = IIX f di' =% jdl .
4

r’ 4r 7 r?
For surface current: B(r) = IK 2 f da’
T r
, Uy ¢ IXFE |,
For volume current: B(r) = _OJ‘ dr
4z r?
For a moving charge: Wrong, why?
Uy (IXF gvo(r—r')xFf Mo gvxF
B(r) =— dr’' = dr'=-=
) 472"[ r? 47r~[ r? A7 r?

A point charge does not constitute a steady current.

The Magnetic Field of Solenoid

ORI,
A
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Solenoid

Problem 5.11 A solenoid of length L
and radius a has N turns of wire and
carries a current I. Find the field
strength at a point along the axis.

AAAAAAAAAAAA

s
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Solution:
s ]

Sine the solenoid is a series of closely

packed loops, we may divided into current k. F A
loops of width dz, each of which contains i /1 E
ndz turns, where n =N/L is the number of L g
turns per unit length. " E;——_ jl

The current within such a loop is (ndz)l.

28




Solenoid (I1)

Con't
z=atand = dz=asec’6df o ) .
nldz = nlasec® #dé T
agil i 1
dB Hod nlasec® d@ :

axis — 2(a2 + atan? 6’)3/2

= % Honl cosgde
61
B= Ll Eyonl cosfdé
=%yonl (sing,-sing,)

B = g, nl (infinitelong solenoid)
29

Homework #9

Problems: 9, 10, 11, 39, 49
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5.3 The Divergence and Curl of B
5.3.1 Straight-Line Currents
The magnetic field of an infinite straight wire:

l

i 271S

The integral of B around a circular path of radius s, centered
at the wire, is:

l ~ .
§B@)-di= 70" b-fsdg =

In fact for any loop that encloses the wire would give the

same answer. Really? sl

The Differential Form of B

Suppose we have a bundle of straight wires. Only wires
that pass through the loop contribute z].
The line integration then be k.

j;B(l‘)'dl:ﬂo'enc Imc:jJ'da il

The total current enclosed Ly — ™

by the integration loop. e b

§B-d1=j(V><B)-da=jyoJ-da
VxB=pJ

Does this differential equation apply to any shape of the

current loop? Yes, to be prove next.
32




5.3.2 The Divergence and Curl of B
s Jinna
The Biot-Sarvart Law for the

general case of a volume
current:

B is a functon of (x. y, 2),
J(r")xF
B(r) = ﬂj’% dz’
4 r
dt’ =dx dy' d7.
The integration is over the primed coordinates.

The divergence and the curl are to be taken with
respective to the unprimed coordinates.

J is a function of (x', ¥', 2'),

a=(x—xYk+ O -¥I¥+G—2)E

33

The Divergence of B

The divergence of B:
V-B(r) :v.(ﬂj—"(r P gy 2o v (X0 g,
r A r

J(r')2>< fy_

r r

V- (AxB)=B:(VxA)—A-(VxB)

F A

v-( _(Vxd)- -(Vx%)

".‘
_2

V.(J(r)xf ~ % ()

~V-B=0 Thedlvergenceo amagneticfieldis zero.

:—V( ) (Prob. 1.13)

34

The Curl of B
The curl of B:

VB“OIV( )dz'

vx(AxB% (A-V)B+A(V-B)— B(/A)
\ '\

primed

J(r)xr

unprimed primed

J(r )>< ) +unprimed Orto be seen next
VX (N IV ) -0 )
Vx (J(r)xr) I(V- 2)=J4ﬂ5 (r) (see 1.5.3)

L VxB =247 [3(r)5°(r)dr’ = 1 d (r)
4
VxB=u,J Thecurl of B equals x, timesJ.

35

I(J-V)%dr’:IV'-(X

A Special Technique

Let’s prove that this
integration is zero.

J(J-V)%dr'zo
¢ F
1V =—-v) L,
r r
wheer =(r-r')
V.(fA)=Vf-A+ f(V-A)

special technique {

Using the above rule, the x component is:

0, for steady current

0, since J(r'@«)=0
=$(“4=3)-da’=0
A §

What happens if J(r’)=0 36




5.3.3 Applications of Ampere’s Law
VxB=uJd Ampereslawin differential form

[(vxB)-da=  §$Bxdl={pd-da= sl

amperianloop

j?Bxdl:yOIenc Ampere'slaw inintegral form e

amperianloop

Just as the Biot-Savart law plays a role in magnetostatics
that coulomb’s law assumed in electrostatics, so
Ampere’s play the role of Gauss’s.

Electrostatics: Coulomb - Gauss,
Magnetostatics: Biot-Savart > Ampere.

37

Applications of Ampere’s Law

Like Gauss’s law, ampere’s law is always true (for steady
currents), but is not always useful.

Only when the symmetry of the problem enables you
to pull B outside the integral can you calculate the
magnetic field from the Ampere’s law.

These symmetries are:

1. Infinite straight lines

2. Infinite planes (Ex. 5.8)

3. Infinite solenoids (Ex. 5.9)
4. Toroids (Ex. 5.10)

38

Infinite Straight Wire

Example An infinite straight wire of radius R carries a current I.

Find the magnetic field at a distance r from the center of the
wire for (a) r>R, and (b) r<R. Assume that the current is
uniformly distributed across the cross section of the wire.

Solution:

@ §B-df: B2ar = 1,

Mol
B="" R
o (r>R)

(b) ar? |
§B-d€=82ﬂr=yoﬁl : i

2

Bt (r<R)
27R

Infinite Planes _
Example 5.8 Find the magnetic field  sw of comen K

of an infinite uniform surface T A
current K =Kx, flowing over the xy '
plane. kst ol

. el Arrymrian
Solution:

§B-dr = B2 = 1Kl

g MK

_{,uOKlzy forz<0
2

—u K /2y forz>0

40




Solenoid

Example 5.9 An ideal infinite solenoid has n turns per unit
length and carries a current |. Find its magnetic field inside.

Solution:

§B-dr R &

_j B-di+ [ z+j B d£+j/ Qﬂﬂﬂﬂ ggu

:LB-de

BL,, =Nl

(ORI X))

B =y nl

41

Toroid

Example 5.10 A toroidal coil (shaped like a doughnut) is
tightly wound with N turns and carries a current . We
assume that it has a rectangular cross section, as shown
below. Find the field strength within the toroid.

Solution:

§B-dr=Bfdl = NI

_ MoNI
2

The field is not uniform; it varies N \
as 1/r. The toroidal fields are b
used in research on fusion power.

42

5.3.4 Comparison of Magnetostatics and
Electrostatics
o

V.-E=X Gausss law
80

VxE=0 noname (Faraday's law)

V-B=0 Gauss's law for magnetic field
VxB=puJd Ampereslaw (Ampere-Maxwell law)

F=q(E+vxB) Lorentz'sforcelaw
- - - Tlllm|M...+H

Elecinnorc S Vs Mg mcncac
o apman o bapr of i lpag wire
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5.4 Magnetic Vector Potential
5.4.1 The Vector Potential

VxE=0<E=-VV ad V-E=£L vy =-£
) &

V-.B=0<B=VxA and VxB:yOJ:VN)—VZA:yOJ
Is it possible for us to set V-A =0 equals zero? Yes.

Coulomb gauge
Proof: 1f V-A,#0,letA=A,+VAi=>B=VxA,=VxA
If V-A=0,then V’1=-V-A, « similiar to Poisson'sequation

Py
71'6‘0'[ dr

VZi=-V-A, zz—jv A,
4z

VN =-plg, V=

dz’

It is always possible to make the vector potential divergenceless.,,




The Vector Potential and Scalar Potential
Using the Coulomb gauge, weobtain: VZA =—u,J
A:ﬂJ—J(r) dz’

A7 r
For line and surface current,
Ato ldl' Az’uojK(r)d’
Ardr az? r

What happens when the curl of B vanishes?
Magnetostatic scalar potential.

VxB=0 = B=-VU

= VU =0 (similiar to Laplace's equation)
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Example 5.11 A spherical shell, of radius R, carrying a
uniform surface charge o, is set spinning at angular velocity
o. Find the vector potential it produce at point r.

D

Sol First, let the observer isin the z axis and w istilted at an angle
K@)
r

Vector potentia isA(r) = ﬂj
A

The surface current density K(r') = ov’

X ¥ z

® 8in Y 0 wcos Y
Rsin®'cos¢’ Rsin@’sing’ Rcosd’

,_

v=oxr =

= Rewl—(cos ¥ sin 0" sin¢’) X+ (cos ¥ sin 8’ cos ¢’ —sin ¥ cos §") § + (sin ¢ sin @’ sin ¢”) 7).

A =2e Ro(-cosy sind/'ng & R2sing'do'dg’
Jr? + R? — 2rRcosé’
vy Re(cosy sin @' €0s¢™ siny 60s6')§ R? sing'dgdg
4n Jr2 + R —2rRcosé’
&J. Rao(siny sing(sing RCsing'do'dy’
Jr? + R? - 2rRcosf’

A(r) = ~Rloosinyu,y J- cost’
4z Jr? + R’ - 2rRcost’
—R cwsiNyL,y (2r J- —cosd’
ar \/r +R? - 2rRcosd’

—,uoR cwsinyy I

2 SN2+ R2 2rRu
+1 2
. “ du = (R +r? +RW)VR2 +r2 2Rru

R2 4+ v2 _2Rru 3R%r2

sn@'do'dg’

d cosé’

-1

3R2 5 [(R*+7% + ROIR —r| — (B2 41 — Re)(R +n)]. 47

— u,RPowsinyy a (RR+r’+Rr)|R-r|-(R*+r?— Rr)(R+r))
2 3R%r?
HoRo

A(r) =

A(r) =

4

HRo

2 3

Reverting to the “natural” coordinate, we have
uolgwrsinﬂé, (r < R),

(o xr) outside

A(r, 8, ¢) = A
HoR*wo sin@ -
3 ““;_2— s (r = R).
2R L oaa 2 L 2
B=VxA= Jf{gﬂ(cosf)r —sinf §) = E;Lochwz = §p,gaRw.

Surprisingly, the field inside the spherical shell is uniform. 4
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Example 5.12 Find the vector potential
of an infinite solenoid with n turns per
unit length, radius R, and current I.

vvvvvvvvvvv

Sol: A cutemethod that doesthe job.
[B-da=d=[(VxA)-da=fA-di
where® istheflux of B through theloopin question.
fB-di=pl,, = fA-d=0
Using acircular"amperianloop" at a radiusinside the solenoid.

§A~dl= AZmsz'daz,uonl (7s%) = A=’u°—2n|5¢3 fors<R

Using acircular"amperianloop” at aradius soutside the solenoid.

2 /lOnIRZ I
fA-di=A27s=[B-da = gonl (zR°) =A== ¢ fors=R
A

9

Wi

5.4.2 Summary; Magnetostatic Boundary

Conditions ;
* L ]
We have derived five formulas *3:* KR
interrelating three fundamental o LN
quantities: J, A and B. i W,
4 ExVxad: VA =il ]
. ) 0

Comments:
*There is one “missing link” in the diagram.

*These three variables, J, A, and B, are all vectors. It is
relatively difficult to deal with.
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Magnetostatic Boundary Conditions: Normal

a

The magnetic field is not
continuous at a surface with
surface density K. e

K —

What is the physical picture? itz I

Consider a wafer-thin pillbox. Gauss’s law states that
§B -da=0
S

The sides of the pillbox contribute nothing to the flux, in the
limit as the thickness ¢ goes to zero.

(B;_b - Bblelow)A: 0 = B:bove = BtJJ_eIow

ove
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Magnetostatic Boundary Conditions: Tangential

The tangential component of B is
discontinuous.

Consider a thin rectangular loop. The f’;B dl = 1|
curl of the Ampere’s law states that P = Holenc

The ends gives nothing (as ¢—0), and the sides give

(Bz:\i) - Bt/)/elow)g = :uOKg = Be/tlbove - Bt/)/elow = IUOK

ove

Inshort, B, .~ B = LK xn, wheren points" upward.

ove

How about the vector potential A? o




Boundary Conditions in Terms of Vector Potential

Like the scalar potential in electrostatics, the
vector potential is continuous any boundary:

A

above — Abelow

V-A=0= A;_bove:AYJ)_elow

ve — eI ow

VxA = B:>35A dl = jB da=d = A}
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5.4.3 Multipole Expansion of the Vector Potential

1 _ 1
r—r| J(r?+r2 - 2rr' cose)

1 ~(+ (r—') cosd' + (r—')z((scos2 0-0I2)+.)

:—Z( ) P, (cos®)

IN'o
The vector potentl al of acurrent loop

A= Ko 95|r I’ ’uo Z n+135(r) P (cos@")dl'
1
0 ’ ’ Ay’ 12 ’ '
_E{?ggdl +r—2<]5r cos@'dl +r—3<]5r P, (cos@’)dl +}
7 7
monopole dipole guadrupole 54

Multipole Expansion

_,uol 1 ! 1 ' I 1 12 r [
A_E{?Nrr—zqﬁ cosd'dl +F35r P,(cos&)dl' +- -

magnetic monopole term is always zero.

Agp= ﬂol 1 §r cosddl’ = erl ri§( r')dl’

<j.>(r'l' )dl' = —FXIda (Eq. 1.108, to be shown later)

Then

i, 1 . N M, MXF
Adip:—ﬁr—er(IJ‘da):él—; r2

where m = | J.da' isthemagnetic dipole moment.
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A Special Technique
Part|  Recalling Stokes’ theorem J'S(va)-da = fw-dl
Let v=cT Vx(fA)=VixA+ f(VxA) F

j(vXcT)da:j (VTxc+T(V><c))-da=—c-LVT><da
chT dl = gSle — ISVTxdaz—gSle
P

Part Il [ VT'xda' =T, letT' =F-r
S P
V(A-B)=Ax(VxB)+Bx(VxA)+(A-V)B+(B-V)A
VI(E-1) = Bx (ZKT) + 1 x (WST) + (F- V) + (E-F)F
=(@r-V)'=r
erda’ :—qg(r-r')dl’:rx'fda’
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The Magnetic Field of a Dipole

Mo MZXr 1y msing -

Adip_47z r2 4z r? ¢

B

_Vx A = £ (2cosék +sin69)

dip 47ZI’3

N

= y

(a) Field of a "pure" dipole (a) Field of a "physical” dipole
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Homework #10

Problems: 15, 16, 24, 46, 58
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