
1

Chapter 5 Magnetostatics 
5.1 The Lorentz Force Law 5.1.1 Magnetic Fields

By analogy with electrostatics, why don’t we study 
magnetostatics first? Due to lack of magnetic monopole.

If one try to isolate the poles by cutting the magnet, a curious
thing happens: One obtains two magnets. No matter how 
thinly the magnet is sliced, each fragment always have two 
poles. Even down to the atomic level, no one has found an 
isolated magnetic pole, called a monopole. Thus magnetic 
field lines form closed loops.
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The Magnetic Field
Outside a magnetic the lines emerge from the north pole 
and enter the south pole; within the magnet they are 
directed from the south pole to the north pole. The dots
represents the tip of an arrow coming toward you. The 
cross represents the tail of an arrow moving away.

How a current-carry wire 
produces a magnetic field?
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The Magnetic Field of a Bar Magnet
When iron filings are sprinkled around a bar magnet, they 
form a characteristic pattern that shows how the influence of 
the magnet spreads to the surrounding space.

The magnetic field, B, at a point along the tangent to a field 
line. The direction of B is that of the force on the north pole of 
a bar magnet, or the direction in which a compass needle 
points. The strength of the field is proportional to the number 
of lines passing through a unit area normal to the field (flux 
density). 4

Definition of the Magnetic Field

sinqvB qθ= = ×F v B

When defining of the electric field, the electric field strength
can be derived from the following relation: E=F/q. Since an 
isolated pole is not available, the definition of the magnetic 
field is not as simple. 

Instead, we examine how an electric charge is affected by a 
magnetic field.

Since F is always perpendicular to v, a magnetic force does 
no work on a particle and cannot be used to change its 
kinetic energy.

The SI unit of magnetic field is the Tesla (T). 1 T=104 G 
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The Lorentz Force Law

( ) 0mag magdW d q dt= ⋅ = × ⋅ =F l v B v

When a particle is subject to both electric and magnetic 
fields in the same region, what is the total force on it?

This is called the Lorentz force law. This axiom is found in 
experiments.

The magnetic force do no work. 

( )q= + ×F E v B

Really? But, how do you explain a magnetic crane lifts a 
container?
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Force on a Current-Carrying Conductor
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When a current flows in a magnetic field, the electrons as a 
whole acquire a slow drift speed, vd, and experience a 
magnetic force, which is then transmitted to the wire.
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I

F I B θ
= ×
=

F BA
A

A
n: is the number of the conductor per unit volume.
: is defined to be in the direction in which the current is flowing.
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Force on a Current-Carrying Conductor

d Id= ×F BA
The force on an infinitesimal current element is 

The force on a wire is the vector sum (integral) of the forces 
on all current elements.
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Example:
The Magnetic Force on a Semicircular Loop
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A wire is bent into a semicircular loop of radius R. It carries a 
current I, and its plane is perpendicular to a uniform magnetic 
field B, as shown below. Find the force on the loop.

Solution:

The x-components of the forces on such elements will 
cancel in pairs.

The net force on any close current-carrying loop is zero.
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The Motion of Charged Particles in Magnetic Fields

How does a charged particle move with an initial velocity v
perpendicular to a uniform magnetic field B?

Since v and B are perpendicular, the particle experiences a 
force F=qvB of constant magnitude directed perpendicular. 
Under the action of such a force, the particle will move in a 
circular path at constant speed. From Newton’s second law, 
F=ma, we have 

qB
mvr

r
mvqvB =⇒=       

2

The radius of the orbit is directly proportional to the linear 
momentum of the particle and inversely proportional to the 
magnetic field strength. 
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Cyclotron Motion

ππ

πππ

22
1

22 2

B
m
q

m
qB

T
f

Bq
m

qB
m

v
rT

c 





===









===

What are the frequency and the period? Are they independent 
of the speed of the particle? Yes.

The period of the orbit is 

The frequency is called the cyclotron frequency.

All particles with the same charge-to-mass ratio, q/m, have 
the same period and cyclotron frequency.

2.8 MHz Gausscf B =
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Example: Cyclotron
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A cyclotron is used to accelerate protons from rest. It has a 
radius of 60 cm and a magnetic field of 0.8 T. The potential 
difference across the dees is 75 kV. Find: (a) the frequency 
of the alternating potential difference; (b) the maximum 
kinetic energy; (c) the number of revolutions made by the 
protons.
Solution:

How to determine the maximum kinetic energy?

(a)

(b)

(c)

MeV 11J1076.1
2
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m
BqrK
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Helical Motion
What happens if the charged particle’s velocity has not only a 
perpendicular component v⊥ but also a parallel component v//? 
Helical Motion.

The perpendicular component v⊥ gives rise to a force qv⊥B
that produces circular motion, but the parallel component v//

is not affected. The result is the superposition of a uniform 
circular motion normal to the lines and a constant motion 
along the lines.
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Example: Cycloid Motion
Suppose, for instance, that B points in the x-direction, and E
in the z-direction. A particle initially at rest is released from the 
origin; what path will it follow?

1. Write down the equation of motion.

2. Solve the coupled differential equations.

3. Determine the constants using the initial conditions.

Solution:
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Magnetic Bottle/Mirror

What happens if the magnetic field is not uniform? Energy 
transfer between the perpendicular and parallel components. 

In a nonuniform field, the particle experiences a force that 
points toward the region of week field. As a result, the 
component of the velocity along the B lines is not constant.

If the particle is moving toward the region of stronger field, 
as some point it may be stopped and made to reverse the 
direction of its travel.
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Velocity Selector
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Only those particles with speed v=E/B pass through the 
crossed fields undeflected. This provides a convenient way 
of either measuring or selecting the velocities of charged 
particles.
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Mass Spectrometer
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A mass spectrometer is a device that separates charged 
particles, usually ions, according to their charge-to-mass 
ratios.
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Example: Mass Spectrometer
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In a mass spectrometer shown below, two isotopes of an 
elements with mass m1 and m2 are accelerated from rest by 
a potential difference V. They then enter a uniform B normal 
to the magnetic field lines. What is the ratio of the radii of 
their paths?
Solution:

Note1: How particle is accelerated by a potential difference?
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Current and Surface Current

d
d ⊥

=
IK
A

The current in a wire is the charge per unit time passing a 
given point.

Current is measured in coulombs-per-second, or amperes (A).

1 A=1 C/s

In words, K is the current per unit width-perpendicular-to-flow.
//

//

( )( )dd dd dt
d d dt

σ

σ σ
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The surface current density, K, is defined as follows: 
consider a ”ribbon” of infinitesimal width       , running parallel 
to the flow. Then, 

d ⊥A

19

Volume Current Density

d
da⊥

=
IJ

The volume current density, J, is defined as follows: 
consider a ”tube” of infinitesimal cross section da⊥, running 
parallel to the flow. Then, 

In words, J is the current per unit area-perpendicular-to-flow.

//

//

( )( )d ad dd dt
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Conservation of Charge

ˆ
S

I da= ⋅∫ J n

The current crossing a surface S can be written as

In particular, the total charge per unit time leaving a volume 
V is

ˆ ( )

where  .

( )   

S V

V
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ρ

∇ ⋅ = −J

continuity equation
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5.2 The Biot-Savart Law 5.2.1 Steady Currents

Stationary charges produce electric fields that are constant 
in time. Steady currents produce magnetic fields that are 
also constant in time.

Steady current means that a continuous flow that goes on 
forever without change and without charge piling up 
anywhere. They represent suitable approximations as long 
as the fluctuations are reasonably slow.

Stationary charges ⇒ constant electric fields; electrostatics. 
Steady currents ⇒ constant magnetic fields; magnetostatics.

0=⋅∇ J
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5.2.2 The Magnetic Field of a Steady Current

The Biot-Sarvart law:

Definition of magnetic field B: newtons per ampere-meter 
or tesla (T).      1 T=1 N/(A⋅m)

The integration is along the current 
path, in the direction of the flow. 
µ0: the permeability of free space.

0 0
2 2

ˆ ˆ( )
4 4

I ddl
µ µ
π π

′× ×′= =∫ ∫
I lB r r r
r r

The Biot-Sarvart law plays a role analogous to Coulomb’s 
law in electrostatics.
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Example 5.5 Find the magnetic field a distance s from a long 
straight wire carrying a steady current I.
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 Con't  

What is the force between two parallel current-carrying wires?
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Example 5.6 Find the magnetic field a 
distance z above the center of a circular 
loop of radius R, which carries a steady 
current I.

  :Sol 
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Choose cylindrical coordinate ( , , ).
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The Bio-Sarvart Law 
for the Surface and Volume Current

The Biot-Sarvart law: 0 0
2 2

ˆ ˆ( )
4 4

I ddl
µ µ
π π

′× ×′= =∫ ∫
I lB r r r
r r

For surface current:

For volume current:
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For a moving charge:
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( )ˆ ˆ ˆ( )
4 4 4

q qd dµ µ µδτ τ
π π π
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A point charge does not constitute a steady current.

Wrong, why?
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The Magnetic Field of Solenoid

28

Solenoid
Problem 5.11 A solenoid of length L
and radius a has N turns of wire and 
carries a current I. Find the field 
strength at a point along the axis.

Solution:

Sine the solenoid is a series of closely 
packed loops, we may divided into current 
loops of width dz, each of which contains 
ndz turns, where n =N/L is the number of 
turns per unit length. 

The current within such a loop is (ndz)I.
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Solenoid (II)
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Homework #9

Problems:   9, 10, 11, 39, 49                  
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5.3 The Divergence and Curl of B
5.3.1 Straight-Line Currents

The magnetic field of an infinite straight wire:

The integral of B around a circular path of radius s, centered 
at the wire, is:

φrB ˆ
2

)( 0

s
I
π
µ

=

∫∫ =⋅=⋅ Isd
s
Id 0

0 ˆˆ
2

)( µφ
π
µ φφlrB

In fact for any loop that encloses the wire would give the 
same answer. Really?
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The Differential Form of B

Suppose we have a bundle of straight wires. Only wires 
that pass through the loop contribute µ0I. 
The line integration then be 

The total current enclosed 
by the integration loop.

enc0)( Id µ=⋅∫ lrB

Does this differential equation apply to any shape of the 
current loop? Yes, to be prove next.

∫ ⋅= aJ dIenc

JB
aJaBlB

0

0)(
µ

µ
=×∇

⋅=⋅×∇=⋅ ∫∫∫ ddd
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5.3.2 The Divergence and Curl of B

The Biot-Sarvart Law for the 
general case of a volume 
current:

∫ ′×′
= τ

π
µ d2

0 ˆ)(
4

)(
r

rrJrB

The integration is over the primed coordinates. 

The divergence and the curl are to be taken with 
respective to the unprimed coordinates.
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The Divergence of B

The divergence of B:
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The Curl of B
The curl of B:

∫ ′×′
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(See 1.5.3)
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A Special Technique
Let’s prove that this 
integration is zero. 

special technique

0ˆ)( 2 =′∇⋅∫ τd
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Using the above rule, the x component is:
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What happens if J(r’)≠0
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5.3.3 Applications of Ampere’s Law

Just as the Biot-Savart law plays a role in magnetostatics 
that coulomb’s law assumed in electrostatics, so 
Ampere’s play the role of Gauss’s.

form aldifferentiin  law sAmpere'     0JB µ=×∇

form integralin  law sAmpere'      

)(

enc0
loopamperian 

enc00
loopamperian 

Id

Iddd

µ

µµ

=×

=⋅=×=⋅×∇

∫

∫∫∫
lB

aJlBaB

Electrostatics:       Coulomb        Gauss,

Magnetostatics:    Biot-Savart Ampere.
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Applications of Ampere’s Law

Like Gauss’s law, ampere’s law is always true (for steady 
currents), but is not always useful. 

Only when the symmetry of the problem enables you 
to pull B outside the integral can you calculate the 
magnetic field from the Ampere’s law. 

These symmetries are: 

1. Infinite straight lines

2. Infinite planes (Ex. 5.8)

3. Infinite solenoids (Ex. 5.9)

4. Toroids (Ex. 5.10)
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Infinite Straight Wire
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Example An infinite straight wire of radius R carries a current I. 
Find the magnetic field at a distance r from the center of the 
wire for (a) r>R, and (b) r<R. Assume that the current is 
uniformly distributed across the cross section of the wire.
Solution:
(a)
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Infinite Planes
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Example 5.8 Find the magnetic field 
of an infinite uniform surface 
current              , flowing over the xy
plane.

xK ˆK=
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Solenoid
Example 5.9 An ideal infinite solenoid has n turns per unit 
length and carries a current I. Find its magnetic field inside.

Solution:
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Toroid

r
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Example 5.10 A toroidal coil (shaped like a doughnut) is 
tightly wound with N turns and carries a current I. We 
assume that it has a rectangular cross section, as shown 
below. Find the field strength within the toroid.
Solution:

The field is not uniform; it varies 
as 1/r. The toroidal fields are 
used in research on fusion power.
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5.3.4 Comparison of Magnetostatics and 
Electrostatics

0

0 Gauss's law for magnetic field
 

Ampere's (Ampere-Maxwell law law)µ
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B J
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E

law force sLorentz'     )( BvEF ×+= q
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5.4 Magnetic Vector Potential  
5.4.1 The Vector Potential

Proof: 
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The Vector Potential and Scalar Potential

For line and surface current, 

JA 0
2   :obtain  wegauge,  Coulomb  theUsing µ−=∇

What happens when the curl of B vanishes?

Magnetostatic scalar potential.
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Example 5.11 A spherical shell, of radius R, carrying a 
uniform surface charge σ, is set spinning at angular velocity 
ω. Find the vector potential it produce at point r.

  :Sol 

0

First, let the observer is in the  axis and  is tilted at an angle 
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0
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0

3
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Reverting to the “natural” coordinate, we have

Surprisingly, the field inside the spherical shell is uniform.
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Example 5.12 Find the vector potential 
of an infinite solenoid with n turns per 
unit length, radius R, and current I.

  :Sol job.  thedoes that method cuteA 

question.in  loop he through t offlux   theis  where
 )( 

Β
lAaAaB

Φ

⋅=⋅×∇=Φ=⋅ ∫∫∫ ddd

∫∫ Φ=⋅⇒=⋅ lAlB dId           enc0µ

RssnIAsnIdsAd <=⇒=⋅==⋅ ∫∫ for    ˆ
2

   )(2

solenoid.  the radius aat  loop"amperian "circular  a Using
02

0 φµπµπ aBlA

inside

Rs
s

nIRARnIdsAd

s

≥=⇒=⋅==⋅ ∫∫ for    ˆ
2

   )(2

solenoid.  the  radius aat  loop"amperian "circular  a Using
2

02
0 φµπµπ aBlA

outside
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5.4.2 Summary; Magnetostatic Boundary 
Conditions

We have derived five formulas 
interrelating three fundamental 
quantities: J, A and B.

Comments: 

•There is one “missing link” in the diagram. 

•These three variables, J, A, and B, are all vectors. It is 
relatively difficult to deal with.
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Magnetostatic Boundary Conditions: Normal
The magnetic field is not 
continuous at a surface with 
surface density K. 

What is the physical picture?

Consider a wafer-thin pillbox. Gauss’s law states that

0=⋅∫S daB

The sides of the pillbox contribute nothing to the flux, in the 
limit as the thickness ε goes to zero.

⊥⊥⊥⊥ =⇒=− belowabovebelowabove      0)( BBABB
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Magnetostatic Boundary Conditions: Tangential

The tangential component of B is 
discontinuous.

enc0Id
P

µ=⋅∫ AB

The ends gives nothing (as ε→0), and the sides give

KBBKBB 0
//
below

//
above0

//
below

//
above      )( µµ =−⇒=− AA

Consider a thin rectangular loop. The 
curl of the Ampere’s law states that

 upward."" points ˆ   where,ˆ   short,In 0belowabove nnKBB ×=− µ

How about the vector potential A?
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Boundary Conditions in Terms of Vector Potential

Like the scalar potential in electrostatics, the 
vector potential is continuous any boundary:

belowabove AA =

⊥⊥ =⇒=⋅∇ belowabove    0 AAA

Φ=⋅=⋅⇒=×∇ ∫∫ aBlABA dd //
below

//
above    AA =⇒
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5.4.3 Multipole Expansion of the Vector Potential
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Multipole Expansion

20
22 3

1 1 1cos (cos )
4

I d r d r P d
r r r

µ θ θ
π
 ′ ′ ′ ′ ′ ′ ′= + + +  ∫ ∫ ∫A l l l "v v v

magnetic monopole term is always zero.

∫∫ ′′⋅=′′′= lrrlA d
r

Idr
r

I )ˆ(1
4

cos1
4 2

0
2

0
dip π

µθ
π

µ

ˆ ˆ( )d d′ ′ ′⋅ = − ×∫ ∫r r l r av

2
0

2
0

dip
ˆ

4
)(ˆ1

4 r
dI

r
rmarA ×

=′×−= ∫ π
µ

π
µ

.  theis    where moment dipole magneticam ∫ ′= dI

(Eq. 1.108, to be shown later)

Then
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A Special Technique
Recalling Stokes’ theorem ∫∫ ⋅=⋅×∇

P
S

dd lvav)(
Let v=cT

( ) ( ( ))
S S S

P P

T d T T d T d

T d Td

∇× ⋅ = ∇ × + ∇× ⋅ = − ⋅ ∇ ×
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∫ ∫ ∫
∫ ∫

c a c c a c a

c l c lv v

( ) ( )f f f∇× = ∇ × + ∇×A A A

S
P

T d Td∇ × = −∫ ∫a lv

ˆ,   let 
S

P

T d T d T′ ′ ′ ′ ′ ′ ′∇ × = − = ⋅∫ ∫a l r rv
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The Magnetic Field of a Dipole
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Homework #10

Problems:   15, 16, 24, 46, 58


