Chapter 3 Special Techniques
3.1 Laplace’s Equation: 3.1.1 Introduction

Poisson’s equation: V4/ = —ip(r)

€o
Very often, we are interested in finding the potential in a
region where p =0.

There may be plenty of charge elsewhere, but we're
confining our attention to places where there is no charge.
Laplace’s equation: VA =0
o oV oV
7t~ +—5=0
ox- oy~ oz

In Cartesian coordinate,

3.1.2. Laplace’s Equation in 1D

Suppose V depends on only one variable, x.

o
OX?

Two features of this solution:

=0 = VX=mx+b

1. Laplace’s equation is a kind of averaging instruction.

V (X) :%(\/(x—a)+V(x+ a)) foranya

2. Laplace’s equation tolerates no local maxima or minima,
since the second derivative must be zero.

3.1.3. Laplace’s Equation in 2D

Suppose V depends on two variables.
o . oV 0 apartial differential equation (PDE);
ox>  oy? - not aordinary differential equation (ODE).

Harmonic functions in two dimensions have the same
properties that we noted in one dimension:

Features of Harmonic Function in 2D

1. The value of V at a point (X, y) is the average of those
around the point.

1
Vi) =o—o fvde
circle

2.V has no local maxima or minima. All extrema occur at
the boundaries.




3.1.4. Laplace’s Equation in 3D

82\2/ + az\g - 82\2/ =0 (partial differential equation (PDE))
ox~ oy oz
In three dimensions we can neither provide you with an

explicit solution nor offer a suggestive physical example to
guide your intuition.

Nevertheless, the same two properties remain true.

1. The value of V at a point r is the average value of V
over a spherical surface of radius R centered at r:

1

2

V()= fvda

sphere

No Local Maxima or Minima in 3D

2.V has no local maxima or minima; the extreme values
must occur at the boundaries.

Ex. For a single point charge g located outside the sphere
of radius R as shown in the figure, find the potential at the
origin.

1q_ 1 q
'V: = T
Sol: Arsy v Ans, (22 + R? - 2zRcos)"? h
2
OV, (r=0)- 12 q i R29n6b|6d¢ -
47R° 4re,? (2°+ R°—2zRcos0)
_1lq J- —dcosd
2 4rs,

(zZ* + R* - 2zRcosH)"?

. a
27ZR 4re,

1 g q
=— z+R)-(z-R)) =
27R 4rs, (2R =( ) Are,z

0

(Z+R? —Zﬂ?cose)”z‘z £

3.1.5. Boundary Conditions and Uniqueness Theorems

Laplace’s equation does not by itself determine V; a
suitable set of boundary conditions must be supplied.

What are appropriate boundary conditions, sufficient to
determine the answer and yet not so strong as to generate
inconsistencies? It is not easy to see.

For a given set of boundary conditions, is V uniquely
determined? Yes, itis. = uniqueness theorem

Boundary Conditions and Uniqueness Theorems

First uniqueness theorem: the solution to Laplace’s
equation in some volume is uniquely determined if V is
specified on the boundary surface.

Proof:

Suppose there were two solutionsto

Laplace'sequation: VA, =0 and VA, =0

Their differenceis:V, =V, -V,. —
ThisobaysL aplace'sequation, VAV, =0 |
SinceV, is zeroon all boundariesand

L aplace's equation suggests that all extrema
occur on theboundary, soV,. =V, =V,




Uniqueness Theorems with Charge Inside

VA =2 and VA, =2 Let V,=V,-V, = VA, =0
&g €o

SinceV, iszeroon all boundariesand L aplace's equation suggests
that all extremaoccur on the boundary, soV, =0. =V, =V,

Corollary: The potential in a volume is uniquely
determined if (a) the charge density throughout the region,
and (b) the value of V on all boundaries, are specified.

The uniqueness theorem frees your imagination. It doesn’t
matter how you come by your solution; if (a) it satisfies
Laplace’s equation and (b) it has the correct value on the
boundaries, then it is right.

3.1.6. Conductors and the Second Unigueness
Theorems
The simplest way to set the boundary conditions for an

electrostatic problem is to specify the value of V on all
surfaces surrounding the region of interest.

However, in some case we don’t know the potential at the
boundaries rather the charges on various conducting
surfaces. Is the electric field still uniquely determined?

=» Second uniqueness theorem.

Second Uniqueness Theorems

In a volume surrounded by conductors and containing a
specified charge density, the electric field is uniquely
determined if the total charge on each conductor is given.

Proof:
Supposethereare two solutions: ¥

]

V-E = and VE,=£
&o o

Both obey Gauss'slaw inintegral form,

j§ El‘da:giQi and § Ez-da:iQi
0

ith conducting ith conducting &o
surface surface

Likewise, for theouter boundary

1 1
§ E,-da=—Q, and § E,-da=—Q,

outer &g outer €o
boundary boundary
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Asbefore, weexaminethedifference E; =E, - E,

which obeys V - E, = 0in the region between the conductors, and
§E3 -da = 0 over each boundary surface.

Although wedon't know how the chargedistributesitself over
the conducting surface, wedo know that each conductor isan

equal potential, and henceV, isa constant.
Invoking product rule, wefind that

V-(LE;) =V,(V-E;) +E;-VV, = '(E3)2

=0
| <v~(v3E3))dr=§y@5 .da=[-(E;)’dr=0

. E; =0 everywhere Consequently,E, =E,.

12




3.2 The Method of Images:
3.2.1 The Infinite Grounded Conducting Plane

Suppose a point charge is held a distance d above an infinite
grounded conducting plane. What is the potential in the
region above the plane?

The boundary conditions of this case are:

1. V = 0when z = 0 (since the conducting planeis grounded).
2.V — Ofar from thecharge.

13

The Image Charge

We can easily find a solution which

b

satisfies the boundary conditions as in p
the figure.
The uniqueness theory guarantees that o

this case is got to be the right answer.

The potential can then be written down as

-4

V(X1 Y, Z) = 1 d - d

Arey | X2 +y2 +(z—d)? X2+ y2+(z+d)?

Can we use this potential to find out the electric field,

surface charge distribution, and the force? Yes.

14

3.2.2 Induced Surface Charge

It is straightforward to compute the surface charge o
induced on the conductor. :

-+
i
oV oV ; g
O=—8—=—8— '
6n aZ 72-0 |...-""- LI
_-1-1 2(z d)q 2(z+d)q
Tz 2| (0C+ Y +(z-d))P? (0 + Yy’ +(z+0d)%)P? o
_-1-1 -4qd _-1 qd
4r 2 (X*+y*+d?)¥? 27 (X*+y* +d?)¥?

15

Total Induced Charge

The total induced charge is (use the polar coordinate)

-1 qd -1 qd

:Z(x2+y2+d2)3’2 _Z(r2+d2)3’2

27 —
= = ———5fdrd
fota= [ [ % s
_ 00 —qd dr2 — qd |OO
0 2(r2+d2)3/2 (I’2+d2)1/2‘0

-q

16




3.2.3 Force and Energy
The charge q s attracted toward the plane, because of the
negative induced charge.

The force and the energy of this system can be analogous
to the case of two point charges.

Unlike the two point charges system, there is no field in the
conductor. Handle must be care.

17

Work and Energy
Consider the work required to bring q in from infinity.
2
w= [ Fdz= |’ L O g 1 O
» »4re, 4z 4re, 4d
which is half of that of the two point charge system.

2

This is because the conducting plane is grounded.

If the plane is not grounded, what would happen?

18

3.2.4 The Grounded Spherical Conducting Shell

Any stationary charge distribution near a grounded conducting
plane can be treated in the same way, by introducing its mirror
image---method of images.

The image charges have opposite sign; this is what
guarantees that the plane will be at potential zero.

Can this method be applied to a curved surface? Yes.

Here is an examples. A point charge is situated in front of a
grounded conducting sphere.

19

Example 3.2 A point charge is situated a distance a from the
center of a grounded conducting sphere of radius R. Find the
potential outside the sphere.

Sol : Assumetheimagecharge (' is placed at adistanceb from
the center of the sphere.

It isequipotential on thesurfaceof agrounded sphere.
Using two boundary conditionsat P, and P.,.

20




AtR: l(q + q):O
4re, R-b a-R

Atp: 1 (9 94
4rs, R+b a+R

R , R
=—, q :——q
a a

two equations and two unknowns (g’ and b)

b

Theforceof attraction between chargeand the sphereis
1 o -1 J°Ra
F= 2= 2 p2y2
4re, (a—b)* 4rze, (a°-R%)

If the sphere is connected to a fixed potential, can this
method still be applied? Yes.

Just imagine another image charge situated at the center of
the sphere, which provides a constant potential at the
surface. ”n

Ex. Two equal conducting spheres with radius R, each
carries a total charge Q and —Q at a distance d from each
other. Find the electric field outside the conducting spheres.

&3

Sol:

L

7ol g oo

Assume the charges are located at the perspective centers.
Using the image charge method, calculate the first level
induced charges. Then, calculated the second level induced
charges, and so on. The series should converges rather fast.

22

3.3 Separation of Variables

We shall attack Laplace’s equation directly, using the method
of separation of variables, which is the physicist’s favorite
tool for solving partial differential equations.

Applicability: The method is applicable in the circumstances
where the potential (V) or the charge density (o) is specified
on the boundaries of some region, and we are asked to the
potential in the interior (where p =0).

Laplace’s equation:  V/ =0

Basic strategy: look for solutions that are products of
functions, each of which depends on only one of the

coordinates. (X,¥,2) = X(X)Y(Y)Z(2)

23

3.3.1 Cartesian Coordinates

Example 3.3 Two infinite grounded metal plates lies parallel
to the xz plane, one at y=0, and the other at y=a. The left end,
at x=0, is closed off with an infinite strip insulated from the
two plates and maintained at a specific potential V,(y). Find
the potential inside this “slot”.

24




Boundary Condition

The configuration is independent of z, so Laplace’s equation
reduces to two dimensions.

oN oV

o TaE )

The potential inside is subject to the boundary conditions.

(i)V =0when y=0,
i)V =0wheny=a,
i)V =V, (y) when x=0,
(iv)V > 0asx— oo.

25

Separation of Variables

The first step is to look for solutions in the form of products:
V(% y) = X(X)Y(y)
Substituting into Laplace’s equation, we obtain
o°X 0% 1 1 0°X 10%
Y—F+X—=5=0) x —— =2 ——F+-—5=
OX oy XY X ox® Yoy
The first term depends only on x and the second only on y.
The sum of these two functions is zero, which implies these
two functions must both be constant.

0

2 2
10X G g LY g

26

A Simple Solution

Let C, equal k?, for reasons that will appear in a moment.

, =0 (iv)
% 86x>2< =k> = X(x)=fe*+Be™

2 =0 (i)
%gy—rz—kz = Y(y)=Csinky+ 'cosky

V(x,y) = (Ae* + Be™)(Csinky + D cosky)

The boundary condition (iv) require A equal zero, and (i)
demands that D equal zero.

Meanwhile(ii) yields sinka =0, fromwhichit followsthat

Kk =n—7[, n=123,... Whynotn=0?
a
27

A Complete Solution in Fourier Series

Now we have an infinite set of solutions.

V(xy)=> C.e"™sin(nzy/a)
n=1

Can we use the remaining boundary condition (iii) to
determine the coefficients C,? Yes.

V(0.y)= Y C,sin(ny/a) =Vy(y)

This is a Fourier sine series. Virtually any function V,(y)---
can be expanded in such a series. !

We can use the so-called “Fourier’s trick” to find out the
coefficients C,,.

28




The Fourier Trick

2., [ 'sin(nay/a)sin(n'zy/a)dy = [V, (y) sin (n'zy/a)dy
Theintegral on theleftis
[ sin(nay/a)sin(n'zy/a)dy

0, ifn=n
. M- Ny =) a
_Ejo(cos((n n’) a) cos((n+n’) a)dy— %, it n

2 ca .
Cy == [, Vo(¥)Sn(n'zy/2)dly

29

A Concrete Example

For a constant potential V,

A ca Y 0, if niseven
— Yo (Pgn(n - =
C,= " josn(nﬂy/a)dy - (1-cosnr) %’ it nisodd
nz

e "™?sin(nzy/a)

30

Completeness and Orthogonality

The success of this method hinges on two extraordinary
properties, i.e. completeness and orthogonality.

Completeness: If any other function f(y) can be expressed
as a linear combination of a complete function set f,(y):

F(y)=3C ()

Orthogonality: If the integral of the product of any two
different members of the set is zero:

joa f(y)f.(y)dy=0 for n'=n

31

Rectangular Metal Pipe

Example 3.5 An infinitely long rectangular metal pipe (side a
and b) is grounded, but one end, at z=0, is maintained at a
specified potential Vy(y,2), as shown in the figure. Find the
potential inside the pipe.

¥

*'%bﬁl

h [ H ,!.-' X
b

ra

32




Boundary Condition
This is a genuinely three-dimensional problem,
oV oV 82\/
2 + 2
ox~ oy 82

The potential inside is subject to the boundary conditions.
(1))V =0when y =0,
i)V =0wheny=a,
(iii)V =0when z=0,
(iv)V =0whenz=D,
V)V =V,(y, z) when x =0,

(Vi)V > 0asx — oo.
33

Separation of Variables

The first step is to look for solutions in the form of products:
V(X y,2) = X(X)Y(y)Z(2)

Substituting into Laplace’s equation, we obtain
1 82X 1 82Y 1 0°Z
X ox2 Y oy’ Z 0z°

It follows that
2 2 2

LOX o 1Y 0202,

X oX Y8y Z oy

How do we know? Any other possibility?

34

A Simple Solution

2 / 2:0 (Vi) 2,2
aX—(kz E) = X(X) +/x+Be—k+€x

1

X

la—:—k2 = Y(y)=Csinky+ cosk?oﬂ)
Y oy’

1
z

0
P _ =0 (iii)
—=—(* = Z(z)=Esm€z+f6_s‘£z

Meanwhile(ii) and (iv) yields sinka=0andsin /b =0,
fromwhichit followsthat

k=27 n-123.. z:%, m=123...

a

35

A Complete Solution in Fourier Series

The solution is
V(% y,2) = BCEe V@ O™ gn (nzy/a) sin (mz/b),

wheren and mare unspecified integers.

Completeness: the solution can be written as

V(X,Y,2) = ZZC g V@) sm(n;zy/a)sm(m;zz/b)
_1 m_

Use the boundary condition (v) and the orthogonality to find
out the coefficients C, .

V(0,y,2) =Y. 3C, . sin(nay/a)sin(mz/b) V,(y, 2)

n=1 m=1
36




The Fourier Trick & Constant Voltage Solution

iicn'mjoasin (nzy/a)sin (n’;zy/a)dyfjsin (mzz/b)sin(m' zz/b)dz

n=1 m=1

- f: f; V, (Y, 2)sin(n'zy/a) sin (m' 7z/a)dydz
Com = %f: I; Vo(y, 2)sin(nzy/a) sin(mzz/b)dydz

If theend of thetubeisaconductor at constant potential V,
N, 2a 2b 16V,

Cmn=—"——=—s if nandmareodd.
’ ab nr mz nmz
=0 if nor mareeven.
1 = —7 (D)% +()%x . .
V(xY,2) = 6\2/0 > ie @™ gn (nzy/a) sin(maz/b)
nm-135,.. MM

37

Homework #5

Problems: 10, 12, 15, 47

38

3.3.2 Spherical Coordinates

For round objects spherical coordinates are more suitable.
In the spherical system, Laplace’s equation reads

10,,0V 1 o ,. ,0V 1 oV
—2—(r —) + 7 —(SlnH—)+ﬁ 2 =0
re<or o r°sing oé 00" r°sin“f o¢

We will first treat the problem with azimuthal symmetry,
so that the potential is independent of 4.

i(rza_v +__1 i(sn@&)zo
or or sng 00 00

39

Separation of Variables

The first step is to look for solutions in the form of products:
V(r,0) = R(r)O(0)

Substituting into spherical Laplace’s equation, we obtain
lﬁ(rzﬁ + 1 i(gnga_@)zo
Ror o’ 0snd ol 00

The first term depends only on r and the second only on 6.
The sum of these two functions is zero, which implies these
two functions must both be constant.
1 R 1 :
L1202 Ry ), L 9 6ino 22y —s(r+1)
R or or ®sind ol 06

Again, how do we know? Any other possibility? 40




Simplest Case: A Metal Sphere

Example: A metal sphere of radius R, maintains a specified
potential V,,. Find the potential outside the sphere.

Sol: The potential is independent of 6 and ¢.

A Simple Solution & Legendre Polynomials

The general solutions for Rand © are
oR
i(rz

—)=UI+DR = R= Al + B

/+1

The Laplace’s equation is: __( 2 dR
Roar . or ——( 6—) =—((/+1)® Thesolutionsarenot simple.
A OR A sind 06
R=—+B = —=-—
r or r The solutions are Legendre polynomials in the variable cosé.
2OR A 0, ,0R 0
r A 50 —)= 0(0) = P,(cosh)
R(r=R)= Ai+ B=V, ..B=0(limV=0) The polynomials is most con\{eniently_defined by the
R, r—o Rodrigues formula (generatlng function):
V() =v, P(x)= 2-1)’
— Ty ' zl d
41 42
Rodrigues Formula
l
Prove: B(x)— 21 ) (x*-1)", x=cos@ Let k=/¢ and u=v" :% P.(cosf)(2' 1)
. 2\, " ' _
where 19%( apl(aczse)):_(((_'_l)e(cosg) ..(1—X )U —Z)ZU +€(€+1)U—0
sin
Sol: = (1-cos’ ) 'R (CZOSH) —2X i (((j:os@) +L({+1)P,(cosd) =0
Let v=(x*-1)'
V= 2€x(2x2 —1)7 X (X*-1) ( dP(cosd) dP(cosd)dd 1 dP(cosh)
= (=X +20xv=0 dx d6 dx sng do
) d*P(cosd) d 1 dP (cos6) 1
(L= XEWV = 2V + 2% + 20V =0 o a8 sne do Cang
(1-X°WV' +2(/-Dxv' + 2/v=0 _ 1 d’B(cosh) cosd dP (cosb)
(1= X°W"+2(0 = 2)xv" +2(20 -V =0 \ sn“4  do? sn6  do

@ xWV*2 12(4 —k =)™ + (k+1)(2¢0 - k)V® =0

44




1 d?’P(cosf) cosé dP (cosh)
1-c0s’ 6 : — !
( )[sin2¢9 de? sn’6  do |
1 dP,(cosd)

—-2cosf[———————=]+ /(¢ +1)P,(cosé
[sine a0 ]+ £(¢+1)P,(coso)

+((¢+1)P,(cosd)

_ d?P,(cosb) | Cos0 dP, (cos®)
do? sind do

_ L 94 o980y 1 1)p (cosh) =0
sing dé deo

1 d’(cos*6-1)
i dx’ +

P (coso) = 5

45

Properties of Legendre Polynomials
The first few Legendre polynomials are listed

Po(x) = |1 o
Pi(x) = x P, (x) :an (th - order polynomialin x
Pyx)y = @x2-1/2

Pi(x) = (5x* —3x)/2

Pi(x) = (35x* —30x2+3)/8

Ps(x) = (63x° —70x> 4+ 15x)/8

Completeness: The Legendre polynomials constitute a
complete set of function, on the interval -1<x<1.

Orthogonality: The polynomials are orthogonal functions:
1 T )
L P,(X)P, (X)dx = J'O P, (cosd)P, (cosd)sinadé

0 ifo=¢
= 2

JAf 0 =7
20+1 46

A Complete Solution in Legendre Polynomials

The Rodrigues formula generates only one solution. What
and where are other solutions?

These "other solutions” blow up at 6=0 and/or 6=, are
therefore unacceptable on physical grounds.

V(r.0)=(Ar' + Br%)a(cose)

The general solutions is the linear combination of separable
solutions.

V(o)=Y (A + Brz—lﬂ)Pl(cos@)

(=0

a7

Example 3.6 The potential V,(0)=V,sin?(6/2) is specified on
the surface of a hollow sphere, of radius R. Find the potential
inside the sphere.

Sol: In this case B,=0 for all 1---otherwise the potential would
blow up at the origin. Thus,

V(r,0) = iﬂr’ﬂ(cos@) - V(RO = iA,R‘P(,(cosH)

20+1 1 (= .
A = > W(}V(R,@)B(cos@)sn@de

20411, ., 0 .
= W'[ovosm (E)P,(cose)snede
_ 20411 =

2 R
20411 (=

2 R

\% (1 cos0)P, (cos) sinde

\% (R,(cosO) — B (cos®))P (cosd)sinddo "




A= 20+11 ”V_ZO(PO(COSI9)_ P,(cos®))P,(cosh)sin&da

2 R

. 0 if 0/ =/
[LPOOP(Xdx=1_2 ¢, _,
20+1
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Example 3.8 An uncharged metal
sphere of radius Ris placed in an
otherwise uniform electric field E = E,z
Find the potential in the region outside
the sphere.

Sol: The sphere is an equipotential---we may as well set it to
zero.

The potential is azimuthal symmetric and by symmetry the
entire xy plane is at potential zero.

In addition, the potential is not zero at large z
Boundary conditions are:
i)V =0whenr =R,

(i)V —> —E,rcoséd forr >> R
50

V(r,0) = i(Agrf +B,r “Y)P (cos#)

(=0

B.C.(): V(RO)= (AR +B,R )P (c0sh) =0

= B[ — A(:R2(7+1
B.C. (ii): V(r.0)=3 (Ar')P(cosd) = ~E,f coss

(=0

= A =-E,, dlother A arezero.

R3
(V(r,0) =—E,(r ——)cosé
r

r=R -

3
1 E|_ =-VV=E@+ 2%) cosér = 3E, cosér

| 0(0) = £,(3E, cosér)r = 3¢, E, cosé
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3.4 Multiple Expansion
3.4.1 Approximate Potential at Large Distance
If you are very far from a localized charge distribution, it
“looks” like a point charge, and the potential is---to good

approximation—(1/4ne,)Q/r, where Q is the total charge.
But what if Q is zero?

Develop a systematic expansion for the potential of an
arbitrary localized charge distribution, in powers of 1/r.

1 1
V(r)=——|——p("d
) 4re, J.‘r—r"p( )
Using thelaw of cosines,
1 1 ‘Note, for simplicity,

=1 B \/(rz +(r)?-2rr'cosg) Yz




Large Distance Approximation

1 1

' :l(1+8)—1/2
|r—r

B J(r2+(@2=2rr'cose’ T

! !

where &= (r_ —2cosd’)
rr

Taylor’s expansion

1 1 1 3 5
Tlre) V=Sl -
r( ) r( 2 8 16 ) @

so t la U oeesey+ 3T (K - 2c0s0))
e—r| r° 2r°r 8r r

5.1 r
— = (—(—=-2c0s8))*+...
16(r (r ) )

:%(1+ (%) cosd' + (r?')z((scos2 0-112)+..)
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Legendre Polynomials & Multiple Expansion

1t Dyeoso+ ()2(@Beost o -1)12)+..)
=] T r r
15 &y R (cose)
o r
V(r):_[ 1 Z(r—)*a(cose’)p(r’)dr’ This is the desired result.

Arer i 1

__1 iiﬁj‘(r’)zB(cose’)p(r’)dr’
Arer i1 )

[ ptryde +5 [ 1 cosop(r)de
r r

1
Adre,

or moreexolicity|V (r) =

1
+r—3j(r')2(gcos2 0' 1) p(r)dz + ...

The multiple expansion of V in power of 1/r. 5

Legendre Polynomials & Multiple Expansion

V(r)

1 1 r ’ 1 ! ’ ’ ’ 1 ’ 3 ’ ’ ’
pe (?jp(r)dr +r—2.[r cosOp(r)dr +Fj(r )2(5005249 ~)p(r)dz' +..)

+, = + v — *
+ - + -
L] > —a — =+ — +
Monopole Dipole Quadrupole Octopole
(V~1nr (V~1/rY) (V~1Urh (V~1rh
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Dipoles
What is dipole? The arrangement of a pair of - .l_r
equal and opposite charges separated by i -

some distance is called an electric dipole.
Permanent dipole: such as molecules of HCI, CO, and H,0.

Induced dipole: An electric field may also induce a charge
separation in an atom or a nonpolar molecule.

e H L] - 1 —_ i = i
T . é——)“ P [ @ ::| iz i'.:'}l &
lll__k___@I F."'.- It\I\“‘--L_____--"" e l".\'\'\.\_\_T-F-I--.

H

11111




Example 3.10 A electric dipole consists of s -~ i
two equal and opposite charges separated ., f
by a distance d. Find the approximate 8 4
potential at points far from the dipole. ]
o

Sol:

1 _q 12 12

V(r)= ( )= (A-&)""-1+e)™")

4 &, |r——z| |r+ z| Arg,r

! ! !

where gzL(r——Zcose’)zgcosé’ (if r—<<L S0 0'=6)
rr r r

V(r)= (@-2)"~@1+e)™)
47r80
(_ cost) = 1 qdcosé
4;zgor r 4rg, r°
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The Electric Field of a Dipole
1 qdcosd 1 r-p_ p cosd /Why?

V(r)= 2 - 2~ 2 :
dre, 1 4rg, 1 g, T Just a convention.

where P = gd T pointing form negativechargeto the positive charge.

2cos€ ~ SI n 0
P_(- 0+0§)
Are, r

E=-VV(r)=

= =(- —2Cosék + 1 sind9)
47zgor

(a) Field of a "pure" dipole (a) Field of a "physical” dipole 58

Some Important Properties of Dipole

-

Field due to a dipole:
=Qd(-—>+) o
Torque in a uniform field: - s
- sl

Potential energy:

U=—p-E 2 S A—.
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Homework #6

Problems: 19, 26, 37, 49
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