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Chapter 3 Special Techniques
3.1 Laplace’s Equation:  3.1.1 Introduction

Very often, we are interested in finding the potential in a 
region where ρ =0. 
There may be plenty of charge elsewhere, but we’re 
confining our attention to places where there is no charge.
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3.1.2. Laplace’s Equation in 1D

Suppose V depends on only one variable, x. 

Two features of this solution:
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2. Laplace’s equation tolerates no local maxima or minima, 
since the second derivative must be zero.

1. Laplace’s equation is a kind of averaging instruction.
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3.1.3. Laplace’s Equation in 2D

Suppose V depends on two variables. 

Harmonic functions in two dimensions have the same 
properties that we noted in one dimension:
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Features of Harmonic Function in 2D

2. V has no local maxima or minima. All extrema occur at 
the boundaries. 

1. The value of V at a point (x, y) is the average of those 
around the point.
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3.1.4. Laplace’s Equation in 3D

In three dimensions we can neither provide you with an 
explicit solution nor offer a suggestive physical example to 
guide your intuition. 

Nevertheless, the same two properties remain true.
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1. The value of V at a point r is the average value of V
over a spherical surface of radius R centered at r:
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No Local Maxima or Minima in 3D

Ex. For a single point charge q located outside the sphere 
of radius R as shown in the figure, find the potential at the 
origin. 

Sol:
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2. V has no local maxima or minima; the extreme values 
must occur at the boundaries. 
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3.1.5. Boundary Conditions and Uniqueness Theorems

Laplace’s equation does not by itself determine V; a 
suitable set of boundary conditions must be supplied.

What are appropriate boundary conditions, sufficient to 
determine the answer and yet not so strong as to generate 
inconsistencies? It is not easy to see.

For a given set of boundary conditions, is V uniquely 
determined?  Yes, it is. uniqueness theorem
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Boundary Conditions and Uniqueness Theorems

First uniqueness theorem: the solution to Laplace’s 
equation in some volume is uniquely determined if V is 
specified on the boundary surface.

Proof:
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Uniqueness Theorems with Charge Inside

Corollary: The potential in a volume is uniquely 
determined if (a) the charge density throughout the region, 
and (b) the value of V on all boundaries, are specified.
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The uniqueness theorem frees your imagination. It doesn’t 
matter how you come by your solution; if (a) it satisfies 
Laplace’s equation and (b) it has the correct value on the 
boundaries, then it is right.
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3.1.6. Conductors and the Second Uniqueness 
Theorems

The simplest way to set the boundary conditions for an 
electrostatic problem is to specify the value of V on all 
surfaces surrounding the region of interest. 

However, in some case we don’t know the potential at the 
boundaries rather the charges on various conducting 
surfaces. Is the electric field still uniquely determined? 

Second uniqueness theorem.
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Second Uniqueness Theorems
In a volume surrounded by conductors and containing a 
specified charge density, the electric field is uniquely 
determined if the total charge on each conductor is given.

Proof:
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3.2 The Method of Images:  
3.2.1 The Infinite Grounded Conducting Plane

The boundary conditions of this case are:

Suppose a point charge is held a distance d above an infinite 
grounded conducting plane. What is the potential in the 
region above the plane?

 charge.  thefromfar  0  2.
grounded). is plane conducting  the(since 0z when 0  .1

→
==

V
V

14

The Image Charge

The potential can then be written down as

We can easily find a solution which 
satisfies the boundary conditions as in 
the figure. 

The uniqueness theory guarantees that 
this case is got to be the right answer. 
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Can we use this potential to find out the electric field, 
surface charge distribution, and the force? Yes.
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3.2.2 Induced Surface Charge

It is straightforward to compute the surface charge σ
induced on the conductor. 
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Total Induced Charge

The total induced charge is (use the polar coordinate)
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3.2.3 Force and Energy

The charge q is attracted toward the plane, because of the 
negative induced charge.

The force and the energy of this system can be analogous 
to the case of two point charges.
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Unlike the two point charges system, there is no field in the 
conductor. Handle must be care.
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Work and Energy
Consider the work required to bring q in from infinity. 
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which is half of that of the two point charge system.

This is because the conducting plane is grounded.

If the plane is not grounded, what would happen?
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3.2.4 The Grounded Spherical Conducting Shell

The image charges have opposite sign; this is what 
guarantees that the plane will be at potential zero.

Any stationary charge distribution near a grounded conducting 
plane can be treated in the same way, by introducing its mirror 
image---method of images.

Can this method be applied to a curved surface? Yes.

Here is an examples. A point charge is situated in front of a 
grounded conducting sphere.
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Example 3.2 A point charge is situated a distance a from the 
center of a grounded conducting sphere of radius R.  Find the 
potential outside the sphere.
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If the sphere is connected to a fixed potential, can this 
method still be applied? Yes.

Just imagine another image charge situated at the center of 
the sphere, which provides a constant potential at the 
surface. 22

Ex. Two equal conducting spheres with radius R, each 
carries a total charge Q and –Q at a distance d from each 
other. Find the electric field outside the conducting spheres.

Sol:

Assume the charges are located at the perspective centers. 
Using the image charge method, calculate the first level 
induced charges. Then, calculated the second level induced 
charges, and so on. The series should converges rather fast.
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3.3 Separation of Variables
We shall attack Laplace’s equation directly, using the method 
of separation of variables, which is the physicist’s favorite 
tool for solving partial differential equations.

02 =∇ VLaplace’s equation: 

Basic strategy: look for solutions that are products of 
functions, each of which depends on only one of the 
coordinates.

)()()(),,( zZyYxXzyxV =

Applicability: The method is applicable in the circumstances 
where the potential (V) or the charge density (σ) is specified 
on the boundaries of some region, and we are asked to the 
potential in the interior (where ρ =0). 
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3.3.1 Cartesian Coordinates

Example 3.3 Two infinite grounded metal plates lies parallel 
to the xz plane, one at y=0, and the other at y=a. The left end, 
at x=0, is closed off with an infinite strip insulated from the 
two plates and maintained at a specific potential V0(y). Find 
the potential inside this “slot”.
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Boundary Condition

The configuration is independent of z, so Laplace’s equation 
reduces to two dimensions. 
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Separation of Variables

The first step is to look for solutions in the form of products:
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The first term depends only on x and the second only on y. 
The sum of these two functions is zero, which implies these 
two functions must both be constant.
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Substituting into Laplace’s equation, we obtain
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A Simple Solution

Let C0 equal k2, for reasons that will appear in a moment.

The boundary condition (iv) require A equal zero, and (i) 
demands that D equal zero.
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A Complete Solution in Fourier Series
Now we have an infinite set of solutions. 

This is a Fourier sine series. Virtually any function V0(y)---
can be expanded in such a series. 這麼神奇!

We can use the so-called “Fourier’s trick” to find out the 
coefficients Cn.
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The Fourier Trick
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A Concrete Example
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Completeness and Orthogonality
The success of this method hinges on two extraordinary 
properties, i.e. completeness and orthogonality.
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Completeness: If any other function f(y) can be expressed 
as a linear combination of a complete function set fn(y):
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Orthogonality: If the integral of the product of any two 
different members of the set is zero:
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Rectangular Metal Pipe

Example 3.5 An infinitely long rectangular metal pipe (side a 
and b) is grounded, but one end, at z=0, is maintained at a 
specified potential V0(y,z), as shown in the figure. Find the 
potential inside the pipe.
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Boundary Condition
This is a genuinely three-dimensional problem,
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Separation of Variables

The first step is to look for solutions in the form of products:
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How do we know? Any other possibility?
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A Simple Solution
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A Complete Solution in Fourier Series
The solution is 

Use the boundary condition (v) and the orthogonality to find 
out the coefficients Cn,m.
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The Fourier Trick & Constant Voltage Solution
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Homework #5  

Problems: 10, 12, 15, 47                   
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3.3.2 Spherical Coordinates

For round objects spherical coordinates are more suitable. 

In the spherical system, Laplace’s equation reads
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We will first treat the problem with azimuthal symmetry, 
so that the potential is independent of φ.
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Separation of Variables
The first step is to look for solutions in the form of products:

The first term depends only on r and the second only on θ. 
The sum of these two functions is zero, which implies these 
two functions must both be constant.
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Simplest Case: A Metal Sphere
Example: A metal sphere of radius R, maintains a specified 
potential V0. Find the potential outside the sphere.

Sol: The potential is independent of θ and φ. 
The Laplace’s equation is: 21 ( ) 0Rr
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A Simple Solution & Legendre Polynomials

The solutions are Legendre polynomials in the variable cosθ.
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The polynomials is most conveniently defined by the 
Rodrigues formula (generating function):
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Rodrigues Formula
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Properties of Legendre Polynomials


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AAAA
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The first few Legendre polynomials are listed

xxP in  polynomialorder -than  :)( AA

Completeness: The Legendre polynomials constitute a 
complete set of function, on the interval -1<x<1.

Orthogonality: The polynomials are orthogonal functions:
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A Complete Solution in Legendre Polynomials
The Rodrigues formula generates only one solution. What 
and where are other solutions?

These ”other solutions” blow up at θ=0 and/or θ=π, are 
therefore unacceptable on physical grounds.

The general solutions is the linear combination of separable 
solutions.
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Example 3.6 The potential V0(θ)=V0sin2(θ/2) is specified on 
the surface of a hollow sphere, of radius R. Find the potential 
inside the sphere.
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Sol: In this case Bι=0 for all ι---otherwise the potential would 
blow up at the origin. Thus,
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Sol: The sphere is an equipotential---we may as well set it to 
zero. 

The potential is azimuthal symmetric and by symmetry the 
entire xy plane is at potential zero. 

In addition, the potential is not zero at large z.

Boundary conditions are: 

Example 3.8 An uncharged metal 
sphere of radius R is placed in an 
otherwise uniform electric field 
Find the potential in the region outside 
the sphere.
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3.4 Multiple Expansion
3.4.1 Approximate Potential at Large Distance

If you are very far from a localized charge distribution, it 
“looks” like a point charge, and the potential is---to good 
approximation—(1/4πε0)Q/r, where Q is the total charge. 
But what if Q is zero?
Develop a systematic expansion for the potential of an 
arbitrary localized charge distribution, in powers of 1/r.
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Large Distance Approximation
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Legendre Polynomials & Multiple Expansion
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This is the desired result.
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Legendre Polynomials & Multiple Expansion
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Dipoles
What is dipole? The arrangement of a pair of 
equal and opposite charges separated by 
some distance is called an electric dipole.

Permanent dipole: such as molecules of HCl, CO, and H2O.

Induced dipole: An electric field may also induce a charge 
separation in an atom or a nonpolar molecule.
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Sol:

Example 3.10 A electric dipole consists of
two equal and opposite charges separated 
by a distance d. Find the approximate 
potential at points far from the dipole.
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The Electric Field of a Dipole
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Why?

Just a convention.
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Some Important Properties of Dipole

Field due to a dipole:

Torque in a uniform field:

Epτ ×=

) (- +→= dp Q

Potential energy:

Ep ⋅−=U
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Homework #6  

Problems: 19, 26, 37, 49


