Lesson Plan for the academic session 2024-2025

Department: Geology

Semester: First (CCFUP)

B.Sc. Honours

Core Course (CC)

Name of the Teacher	Title of the Teaching Assignment	Dividing th detailed le	e Assignment into Number of Units along with esson plan as per the University Syllabus	Date of Commencement of the Assignment	Number of classes required to complete each unit	Total number of class
APARUPA BANERJEE	_	Unit 1: Earth as a planet:	Introduction to various branches of Earth Science; Origin of the Universe, Solar System and its planets; Meteorites and Asteroids; Cosmic abundance of elements; Origin of Earth- atmosphere, ocean, and life.		8	
AKSHI DAS	C1T: Earth System Science	Unit 2: Solid Earth	Seismic waves and internal constitution of the Earth; Concept of isostasy; Earth's magnetic field; Geothermal gradient and internal heat of the Earth. Introduction to structure: Structural elements: planar and linear structures, concept of strike and dip, trend and plunge rake/ pitch.	07/08/2024	10	46
EN		Unit 3: Plate Tectonics	Concept of plate tectonics, sea-floor spreading and continental drift; Plate boundaries; Earthquake and earthquake belts; Volcanoes- types, products and their distribution.		8	
APARUPA BANERJEE		Unit 4: Hydrosphe re and Atmospher e	Atmospheric circulations; Oceanic currents, tides and waves; Concepts of eustasy.		5	

Z	Unit 5: Earth surface processes	Weathering; erosion; mass wasting; Geological work of wind, river and glacier Formation of soil, soil profile and soil types	5	
LOVELY BURMA	Unit 6: Understan ding the past from stratigraph ic records	Stratigraphy and nature of stratigraphic records; Fundamental laws of stratigraphy: laws of superposition and faunal succession, Absolute andrelative time in Geology. Unconformity and its types, recognition of unconformity. Geological time scale.	10	

Lesson Plan for the academic session 2024-2025

Department: GEOLOGY

Semester: First

B.Sc. MINOR

Core Course-GELMI01

Name of the Teacher	Title of the Teaching Assignment	Dividing the Assignment into Number of Units along with detailed lesson plan as per the University Syllabus	Date of Commencement of the Assignment	Number of classes required to complete each unit	Total number of class
APARUPA BANERJEE	GELMI01 : Essentials of Geology	Unit-I : Introduction to geology: scope, sub-disciplines and relationship with other branches of sciences.	07/08/2024	15	
		 Unit-II: Earth in the solar system, origin Earth's size, shape, mass, density, rotational and evolutional parameters Solar System- Introduction to Various planets - Terrestrial Planets Solar System- Introduction to Various planets - Jovian Planets. Unit-III: Mechanical layering of the Earth: lithosphere, asthenosphere, mantle and core. Earthquake and earthquake belts: seismic waves and internal constitution of the Earth. Volcanoes and volcanism, distribution of volcanoes. Formation of core, mantle, crust, atmosphere, hydrosphere and biosphere. Convection in Earth's core and production of its magnetic field. 			31

BURMAN & DAS	Unit-IV : Fundamental Earth process: Plate tectonics. Plates and plate boundaries.	6	
LOVELY	Unit-V : Weathering and Erosion. Landforms in deserts, glaciated region and river valleys.	10	

Shahid Matangini Hazra Government College for Women

Lesson Plan for the academic session 2024-2025

Department: **GEOLOGY**

Semester: Third

B.Sc. Honours

Core Course (CC)

Name of the	Title of the Teaching	Dividing th	Dividing the Assignment into Number of Units along with		Number of classes	Total number of
Teacher	Assignment	detailed lesso	detailed lesson plan as per the University Syllabus		required to complete	class
				8	each unit	
			1. Modes of magma formation in		1	
		Tinit 1.	the crust and upper mantle			
		Unit 1: Introduction	2. Physical properties of magma -		1	
		to Igneous	temperature, viscosity, density and			
		petrology	volatile content			
& JEE			3. Modes of emplacement of		1	
			igneous rocks: volcanic,			
		I Init 2.	nypabyssal, plutonic	To be decided	1	
AS ER		Unit 2: Forms of Igneous rock bodies	rocks	_	1	
AN AN	C5T: Igneous		2 Forms of ignaous rocks		1	
SHI A B	Petrology		2. Pornis of Igneous focks		1	
UP/			1. Crystallinity, granularity, shapes		2	
ARI			and mutual relations of grains;			
H AP/		IImit 2.	nucleation and growthof igneous			
7		UIIIL 5: Texture and	minerals			
		microstructu	2. Description of the following		2	
		re of Igneous	textures and microstructures with			
		rocks	their occurrence indifferent rocks -			
			panidiomorphic, hypidiomorphic,			
			anouriomorphic, porphyritic,			
			vitrophyric, poikintic, opnitic, sub-			

		ophitic, intergranular, intersertal,		
		pilotaxitic,trachytic, graphic,		
		granophyric, rapakivi, orbicular,		
		corona, perthitic, myrmekitic,		
		variolitic, speherulitic&spinifex		
		3. Binary and Ternary Phase	2	
		diagrams in understanding crystal-		
		melt equilibrium inbasaltic and		
		granitic magmas		
		4. Magma generation in crust and	2	
		mantle, their emplacement and		
		evolution		
		1. Bases of classification of igneous	3	
		rocks: mineralogical, textural,		
		chemical, chemicomineralogical		
		and associational; Norm and mode;		
		Standard classification schemes –		
		Niggli, Wells & Wells and IUGS.		
	Unit 4:	TAS diagram for volcanic rocks		
Cl	lassificatio	2. Composition and texture of	2	40
ne	of igneous	important igneous rocks:		
	rocks	Granitoids, Pegmatite, Syenite,		
		Monzonite, Diorite, Norite, Gabbro,		
		Anthrothosite, Dolerite,		
		Pyroxenites, Peridotite,		
		Lamprophyres, Carbonatite,		
		Rhyolite, Andesite, Dacite, Basalt,		
		Komatiite		
		Phase Rule and its application to	10	
	Unit 5.	eutectic, peritectic and solid		
	Unit 5: Phase	solution system: Phase		
г	1 nase Diagrams	equilibria in the following binary		
	singl and	and ternary systems, and their		
		petrogenetic significance:		

				diopside – anorthite, forsterite –			
				silica, albite – anorthite, albite –			
				albite – anorthite, forsterite –			
				dionside _ silice and penheline _			
				a = a = a = a = a = a = a = a = a = a =			
				1 Magma generation in crust and		2	
				mantle their emplacement and		2	
			Unit 6:	evolution			
			Petrogenesis	2 Petrogenesis of Felsic and Mafic		4	
			of Igneous	igneous rocks: Granitoids Basalt			
			rocks	Gabbros Anorthosite, Komatijtes			
				Alkaline rocks. Kimberlites			
				1. Magmatism in the oceanic		2	
			∐nit 7•	domains (MORB, OIB)			
			Magmatism	2. Magmatism along the subduction		2	
			in different	zones: Island arcs and continental			
			tectonic	arcs			
			settings	3. Magmatism along continental		2	
				rifts			
			1. Study of in	portant igneous rocks in hand		15	
			specimens and	d thin sections: granite, granodiorite,			
			diorite, syanit	e, nephelinesyenite, gabbro,			
		C5P: Igneous	anorthosites,	ultramaficrocks, basalts, andesites,			
		Petrology	trachyte, rhyo	lite, dacite	To be decided		25
			2. Norm calcu	llation. Visual estimation of modes		7	
			from thin sect	tions			
			3. Plotting of	mode in IUGS classification of		3	
			plutonic rock	s (Streckeisen diagram)		_	
	& AS		Unit 1:	Outline of sedimentation process:		3	
LY	z	C6T: Sedimentary	Introduction	Definition of sediment; origin of			
ΛE	MA SH	Petrology	10 Sedimentolo	sediments: mechanicaland chemical	To be decided		
LO L	AK		gv	sediments; source rock or			
	BI		57	provenance			

Unit 2:	Grain size: concept and size scale,	4	
Granulomet	particle size distribution,		
ry	environmental connotation; particle		
	shape and fabric; Sedimentary		
	textures		
	1. Fluid flow: Types of fluids,	2	
	Laminar and turbulent flow,		
	subcritical, critical and supercritical		
	flows; concept of mean flow		
	velocity, unit discharge and bed		
	shear stress; flow profile and flow		
	separation; particle entrainment,		
	transport and deposition		
Unit 3: Basic	2. Mass flow: types, mechanisms	2	
hydraulics	and controlling factors, process-		
and	product relationship		
Sedimentary	3.	2	22
structures	Penecontemporaneousdeformation:		33
	mechanisms and controlling factors		
	4. Sedimentary structure: Primary	2	
	and penecontemporaneous		
	deformation structures		
	5. Bedform stability diagram	2	
	6. Paleocurrent analysis: Data	2	
	acquisition, methodology, different		
	palaeocurrent patterns		
	1. Siliciclastic rocks: Components	3	
	and classification(s) of		
Unit 4.	conglomerates and sandstones		
UIIII 4: Sedimentory	2. Tectonic control on sandstone	1	
rocks	composition		
ions	3. General introduction to		
	Mudrocks, Carbonate rocks;	5	
	controlling factors of carbonate		

			deposition; components and		
			classifications of limestone;		
			dolomite and dolomitisation		
			1. Concepts of diagenesis	1	
		Unit 5:	2. Stages of diagenesis: diagenetic	4	
		Diagenesis	changes in sand and carbonate		
			deposits, lithification		
		1. Identificati	on of sedimentary structures	2	
	C6P: Sedimentary	2. Particle siz	e distribution and statistical analysis	4	
	Petrology	3. Paleocurren	nt analysis	1	22
		4. Petrograph	ic study of clastic and non-clastic	15	
		rocks through	hand specimens and thinsections		
		Unit 1:	1. Fossilization: definition of fossil,	1	
		Fossilization	fossilization processes and modes		
		and fossil	of preservation, exceptional		
		record	preservation		
			2. Taphonomy: definition, different	1	
			types of taphonomic filters		
		Unit 2:	1. Taxonomy: concept of taxonomy	1	
Z		Taxonomy	and taxonomic hierarchy		
IA		and	2. Biological and morphological	1	
IRV		Systematics	species concept		
BC	C7T: Paleontology	Unit 3:	1. Theory of organic Evolution:	4	44
Γλ		Evolution	theory, concept of adaptation and		
/E]		and History	variation, NaturalSelection.		
l Q		of Life	Precambrian – doubtful organic		
			traces of life during the		
			Precambrian,Ediacaran fauna		
			2. Paleozoic – Cambrian Explosion	2	
			of life. Episodes of mass extinction		
			3. Plants: Appearance of	1	
			angiosperma and gymnosperma		
			4. Appearance of fish, amphibia,	1	
			reptiles, birds, mammals and		

			humans			
			5. Mass extinction: five major		2	
			extinction episodes and their			
			causes; effect of extinction			
			1. Definitions: Biozones, index		1	
			fossils, stratigraphic correlation,			
			examples - significance of			
			ammonites in Mesozoic			
		Unit 6:	paleobiostratigraphy			
		Application of fossils in	2. Application of fossils in		1	
		Stratigranhy	Paleoenvironmental analysis			
		Stratigraphy	3. Fossils and paleobiogeography,		2	
			biogeographic provinces, dispersals			
			andbarriers.Paleoenvironmental			
			analysis			
			1. Brief introduction to important		6	
			invertebrate groups (Bivalvia,			
			Gastropoda,			
			Brachiopoda) and their			
			biostratigraphic significance			
E			2. Significance of ammonites in		4	
JE			Mesozoic biostratigraphy and their			
ER		Unit 4:	paleobiogeographic			
AN	C7T: Palaantalaay	Invertebrate	implications. Functional adaptation			
A B.	C71.1 alcontology	s and	in trilobites and ammonoids	To be decided		
JP A		Vertebrates	3. Origin of vertebrates and major		2	
RI			steps in vertebrate evolution			
PA			4. Mesozoic reptiles with special		4	
A			reference to origin, diversity and			
			extinction of dinosaurs			
			5. Evolution of horse and		2	
			intercontinental migrations			
			6. Human evolution		2	
		Unit 5:	1. Introduction to Paleobotany,		4	

		Introduction to Paleobotany, Gondwana Flora Introduction to Ichnology	Gondwana Flora, Plants as indicator of past climate 2. Ichnology and its application in paleoecology	-	2	
AJEE		 Study of fo preservation Study of sy position and a and plant foss 	ssils with various modes of stematic position, stratigraphic ge of various invertebrate, vertebrate ils	To be decided	2 4	-
(UPA BANE)	C7P: Paleontology Lab	3. Study of fu different grou Brachiopoda, Gondwana flo	nctional morphological characters of ps (Bivalvia, Gastropods, Echinodermata, Ammonoidea, ora, vertebrates)		6	30
APAR		 4. Identification (horse, elephan 5. Hard part n common Brace Echinoidea, C Gondwana floo 	on of feeding habits from vertebrate ints, Sus) teeth horphology and identification of chiopoda, Anthozoa, Trilobita, Bastropoda. Identification of ora		16	

Lesson Plan for the academic session 2024-2025

Department: **GEOLOGY**

Semester: Third

B.Sc. Honours

Skill Enhancement Course (SEC)

Name of	Title of the	Dividing the Assignment into Number of Units	Date of	Number of	Total
the	Teaching	along with	Commencement	classes	number of
Teacher	Assignment	detailed lesson plan as per the University Syllabus	of the	required to	class
			Assignment	complete	
				each unit	
-	FIELD GEOLOGY SEC1	-	-	-	-

Contd...

Shahid Matangini Hazra Government College for Women Lesson Plan for the academic session 2024-2025 Department: **GEOLOGY**

Semester: Third

B.Sc. Honours

Generic Elective (GE)

Name of the Teacher	Title of the Teaching Assignment	Dividing the As detailed les	ssignment into Number of Units along with son plan as per the University Syllabus	Date of Commencement of the Assignment	Number of classes required to complete each unit	Total number of class
APARUPA BANERJEE	GE-3T Fossils and Their Applications	Unit 1: Introduction to Fossils	Definition of fossil, fossilization processes (taphonomy), taphonomic attributes and its implications, modes of fossil preservation, role of fossils in development of geological time scale and fossils sampling techniques.	To be decided		
		Unit 11: Species concept	Definition of species, species problem in paleontology, speciation, methods of description and naming of fossils, code of systematic nomenclature (3)		6	
		Unit 111: Introduction to various fossils groups	Brief introduction of important fossils groups: invertebrate, vertebrate, microfossils, spore, pollens and plant fossils. Important age- diagnostic Fossiliferous horizons of India		16	38
		Unit 1V: Application of fossils	Principles and methods of paleoecology, application of fossils in the study ofpaleoecology, paleobiogeography and paleoclimate		8	

		Unit 5: Economic importance of fossils	Implication of larger benthic and micropaleontology in hydrocarbon exploration:identification of reservoirs and their correlation. Application of spore and pollens in correlation of coal seams, spore and pollens as indicator of thermal maturity ofhydrocarbons reservoirs, fossils associated with mineral deposits, fossils as an indicator of pollution.		5	
	GE-3P	1. Study of fossils	1. Study of fossils showing various modes of fossilization		3	
	Fossils and	2. Study of import	2. Study of important fossils from India (list may be prepared			18
r	TheirApplicati	by the department	concern)		15	10
	ons					

Lesson Plan for the academic session 2024-2025

Department: GEOLOGY

Semester: Third

B.Sc. General

Core Course-DSC

Name of the Teacher	Title of the Teaching Assignment	Dividing the Ass detailed lesson	signment into Number of Units along with plan as per the University Syllabus	Date of Commencement of the Assignment	Number of classes required to complete each unit	Total number of class
ENAKSHI DAS	DSC1C: Petrology (Theory)	Igneous Petrology	Unit-I: Magma: definition, composition, types and origin; Forms of igneous rocks; textures and structures of igneous rocks. Unit-II: Reaction principle; Differentiation and Assimilation; Crystallization of unicomponent and bicomponent (mix-crystals); Bowen's reaction series. Unit-III: Mineralogical and chemical classification of igneous rocks. Unit-IV: Detailed petrographic description of Granite, Granodiorite, Rhyolite, Syenite, Diorite, Basalt, Gabbro.	To be decided	8 4 3 2	
		Metamorphic Petrology	Unit-VII: Process and controlling factors of metamorphism; Type of metamorphism. Facies, zones and grade of metamorphism; Textures,		10	31

			 structures and classification of metamorphic rocks. Unit-VIII: Petrographic details of some important metamorphic rocks such as - slate,schists, gneiss, quartzite, marble. 		4	
	DSC1CP: Practical	Igneous Petro Identification of physical proper and optical pro Sedimentary a Identification of rocks both in h thin sections.	blogy: f rocks: On the basis of their rties in hand specimen; perties in thin sections. and Metamorphic Petrology: f sedimentary and metamorphic and specimen and	To be decided		24
ENAKSHI DAS	DSC1C: Petrology (Theory)	Sedimentary Petrology	Unit-V: Processes of formation of sedimentary rocks; Classification, textures and structures of sedimentary rocks; Unit-VI: Petrographic details of important siliciclastic and carbonate rocks such as - conglomerate, breccia, sandstone, greywacke, shale, limestone	To be decided	8	12

Lesson Plan for the academic session 2024-2025

Department: GEOLOGY

Semester: Fifth

B.Sc. Honours

Core Course (CC)

Name of the Teacher	Title of the Teaching Assignment	Dividing the Assignment into Number of Units along with detailed lesson plan as per the University Syllabus		Date of Commencement of the Assignment	Number of classes required to complete each unit	Total number of class
	C11T: Hydrogeology	Unit 1: Introduction	1. Scope of hydrogeology	16/11/2024	1	
		and basic concepts	and its societal relevance.			
LY			Global and Indian			
VE			distribution ofwater			
, Ó			resource			
& I			2. Hydrologic cycle:		3	
ΗZ			precipitation, evapo-			
AA			transpiration, run-off,			
IER			infiltration and			
BUB			groundwater flow. Basic			
B			concept of hydrographs			
JP A			Origin of groundwater,			
RU			Vertical distribution of			
PA			subsurface water, Genetic			
A			classification of			
			groundwater.			

r					
		3. Classification of rocks		3	
		with respect to water			
		bearing characteristics,			
		geomorphic and			
		geologic controls of			
		groundwater, Types of			
		aquifer-unconfined,			
		confined and			
		semiconfined. Water table			
		and piezometric surface.			
		Groundwater provinces in			
		India and West Bengal.			
		4. Rock properties	-	2	
		affecting groundwater:			
		Porosity, void ratio,			
		specific retention and			
		Storage coefficient -			
		specific yield, specific			
		storage and storativity,			
		Anisotropy and			
		heterogeneity of aquifers			
	Unit 2: Groundwater	1. Darcy's law and its		2	
	flow	validity;			
		Reynold'sNumber.Ground			
		water velocity.			
		2. Intrinsic permeability	1	4	
		and hydraulic conductivity.			
		Transmissivity,			
		Measurement of			
		hydraulic conductivity in			
		laboratory – Constant			
		Head Permeameter and			
		Falling(Variable) Head			
		Permeameter. Water Table			

and Piezometric surface		42
contour maps and		
Groundwater flow		
direction, Laminar and		
turbulent groundwater		
flow		
Unit 3: Well 1. Basic Concepts	2	
hydraulics and (drawdown; specific		
Groundwater capacity etc)		
exploration 2. Elementary concepts	2	
related to equilibrium and		
non-equilibrium (Steady		
and unsteady)		
conditions for groundwater		
flow to a well		
3. Surface-based	4	
groundwater exploration		
methods Introduction to		
subsurface borehole		
logging methods		
Unit 4: Groundwater 1. Physical, chemical and	3	
chemistry bacteriological properties		
of water and water quality		
2. Introduction to methods	3	
of interpreting		
groundwater quality data		
using standardgraphical		
plots		
3. Elementary concept on	5	
Groundwater pollution:		
Arsenic, Fluoride and		
Arsenic, Fluoride and Nitrate, Seawater intrusion		
Arsenic, Fluoride and Nitrate, Seawater intrusion in coastal aquifers -		

		Unit 5: Groundwater	1. Surface and subsurface		3	
		management	water interaction.			
			Recharge and discharge			
			areas.Ground water level			
			fluctuations. Effects of			
			Climate Change on			
			Ground water			
			2. Basic concepts of water		3	
			balance studies, issues			
			related to groundwater			
			resourcesdevelopment and			
			management			
			3. Rainwater harvesting		2	
			and artificial recharge of			
			groundwater			
	C11P: Hydrogeology	1. Preparation and inte	erpretation of depth to water	16/11/2024	10	
	(Lab)	level maps and water	level contour maps.			
		Study, preparation and	analysis of hydrographs for			
		differing groundwater	conditions			
		2. Water potential zon	es of India (map study)		2	20
		3. Graphical represent	ation of chemical quality		8	20
		data and water classifi	ication (C-S and			
		Trilinear diagrams). S	imple numerical problems			
		related to: determinati	on of permeability			
		in field and laboratory	and Groundwater flow			
	C12T: Economic	Unit 1: Ores and	1. Ores, gangue minerals,	16/11/2024	1	
	Geology	gangues	tenor, grade and lodes.			
SAS			2. Resources and reserves-		1	
EE			Economic and Academic			
RJ SH			definitions			
AK		Unit 2: Mineral	1. Mineral occurrence,		1	
BA		deposits and classical	Mineral deposit and ore			
		concepts of ore	deposit			
P		formation	2. Historical concepts of		1	

		ore genesis: Man's earliest			46
		vocation- Mining			
		3. Plutonist and Neptunist		1	
		concepts of ore genesis			
		4. Metallogenic provinces		1	
		and epochs			
Unit	t 3: Mineral	1. Exploration and		2	
ex	ploration	exploitation techniques			
		2. Brief idea on: Remote		6	
		Sensing, Geophysical and			
		Geochemical Explorations			
		3. Geological mapping at		3	
		different scales, drilling.			
		borehole logs and			
		transverse sections			
Unit 4:	Structure and	1. Concordant and		2	
tex	ture of ore	discordant ore bodies			
	deposits	2. Endogenous processes:		8	
		Magmatic concentration.			
		skarns, greisens, and			
		hydrothermaldeposits			
		3. Exogenous processes:		6	
		weathering products and			
		residual deposits, oxidation			
		andsupergene enrichment.			
		placer deposits			
Unit	5: Ore grade	Assessment of ore grade		2	
an	d Reserve	and reserve, reserve			
		estimation			
Unit 6:	: Metallic and	1. Important deposits of		6	
Non-1	metallic ores	India including atomic		-	
		minerals: Study of			
		geologic set up, mode			
		of occurrence, mineralogy			
			1		

		and genesis of the			
		following ore deposits in			
		India Iran ara			
		india - iron ore			
		in Singhbhum and			
		Karnatake, Manganese of			
		Central India, Copper of			
		Malanjkhand,			
		lead-zinc of Zawar area,			
		Uranium of Singh bhum.			
		2. Non-metallic and		4	
		industrial rocks and			
		minerals, in India.			
		3. Introduction to		1	
		gemstones.			
C12P: Economic	1. Hand sample identit	fication of important ores	16/11/2024	4	
Geology	and non-metallic mine	erals			
	2. Study of microscop	ic properties of ore forming		8	
	minerals (Oxides and	sulphides)			
	3. Preparation of maps	: Distribution of important		2	14
	ores and other econom	nic minerals in India			

Lesson Plan for the academic session 2019-2020

Department: GEOLOGY

Semester: Fifth

B.Sc. Honours

Discipline Specific Elective (DSE)

Name of the Teacher	Title of the Teaching Assignment	Dividing th detailed lesse	ne Assignment into Number of Units along with on plan as per the University Syllabus	Date of Commencement of the Assignment	Number of classes required to complete each unit	Total number of class
	DSE1T: Introduction	Unit 1:	1. What is geophysics?		1	
	to Geophysics	Geology and Geophysics	2. Interrelationship between geology and geophysics		1	
		Unit 2: General and	1. Different types of geophysical methods - gravity, magnetic, electrical		12	
NERJEE		Exploration geophysics	and seismic; Principles of different methods. Applications of different methods.Elements of well logging			
BA			2. Corrections in geophysical data	16/11/2024	2	40
UPA		Unit 3: Geophysical	1. Data acquisition and Processing. Data reduction.Signal and noise.		4	
APAR		field operations	2. Different types of surveys, grid and route surveys, profiling and sounding		6	
			a. Scales of survey b. Presentation of geophysical data			
		Unit 4: Application	1. Regional geophysics, oil and gas		4	
		of	groundwater geophysics,			

Contd...

		Geophysical	engineering geophysics			
		methods	2. Geological interpretation of		2	
			geophysical data			
		Unit 5:	1. Correction to measured quantities,		3	
		Geophysical	geophysical, anomaly, regional and			
		anomalies	residual (local)anomalies.factors			
			controlling anomaly			
			2. Depth of exploration		2	
		Unit 6:	Ambiguities in geophysical		3	
		Integrated	interpretation, planning and execution			
		geophysical	of geophysical surveys			
		methods				
	DSE1P: Introduction	1. Anomaly an	d background- Graphical method.		6	
	to Geophysics	2. Study and in	terpretation of seismic reflector	16/11/2024	6	16
		geometry.		10/11/2024		10
		3. Gravity anot	maly: Problems on gravity anomaly.		4	
	DSE2T: Fuel Geology	Unit 1:	Different Sources of energy: Global		2	
		Energy	and Indian scenario			
		Resources				
		Unit 2: Coal	1. Definition and origin of Coal		2	
			2. Basic classification of coal		1	
S.			3. Fundamentals of Coal Petrology -		3	
DA			Introduction to lithotypes,			
H			microlithotypes and macerals in coal			
ISX			4. Proximate and Ultimate		1	
AF			5. Major coal basins of India	16/11/2024	3	44
EN		Unit 3: Coal	1. Concept of clean coal technology	-	2	
8		as a fuel	2. Coal Bed Methane (CBM): global		3	
Z			and Indian scenario	-		
MA			3. Underground coal gasification	-	2	
R			4. Liquetaction of coal		2	
BU		Unit 4:	1. Chemical composition and physical		3	
Ι. Λ.		Petroleum	properties of crudes oil	4		
'EI			2. Origin and migration of petroleum	4	3	
10			3. Kerogen: Maturation of kerogen;		3	
			Biogenic and Thermal effect			

	Unit 5:	1. Reservoir rocks: general attributes		2	
	Petroleum	and petrophysical properties			
	Reservoirs	2. Cap Rocks: definition and general		1	
	and Traps	properties			
		3. Hydrocarbon traps: definition,		8	
		Classification of hydrocarbon traps -			
		structural, stratigraphic and			
		combination			
		a. Time of trap formation and time of			
		hydrocarbon accumulation.			
		b. Plate tectonics and global			
		distribution of hydrocarbon reserves			
		c. Petroliferous basins of India			
	Unit 6:	1. Nuclear Fuel		2	
	Other fuels	2. Gas Hydrate		1	
DSE2P: Fuel Geolog	7 1. Study of ha	nd specimens of coal		2	
	2. Reserve esti	2. Reserve estimation of coal		4	
	3. Section corr	elation and identification of hydrocarbon	16/11/2024	6	18
	prospect	-			
	4. Panel and F	ence diagrams		6	

Lesson Plan for the academic session 2024-2025

Department: GEOLOGY

Semester: FIFTH

B.Sc. General

Core Course-DSE1A

Name of	Title of the	Dividing the Assignment into Number of Units along		Date of	Number of	Total
the	Teaching	with		Commencement	classes	number of
Teacher	Assignment	detailed lesson plan as per the University Syllabus		of the	required to	class
				Assignment	complete	
					each unit	
	DSE1AT:	FUEL	Unit 1: Energy Resources		4	
	Introduction to	GEOLOGY				
	Fuel Geology(Unit-II: Coal		4	
	Theory)					
			Unit-III: Coal as a fuel		4	
				16/11/2024		23
			Unit IV. Detroloum		4	
7			Unit-Iv.: Petroleum			
A					2	
URM					3	
			Unit-v:. Petroleum Reservoirs			
Y B			and Traps			
					4	
VF					т	
9			Unit-VI:.Other fuels			
	DSE1AP:		1.Study of hand specimens of coal		6	
	Introduction to		2. Reserve estimation of coal		2	
	Fuel Geology (3. Section correlation and	16/11/2024	2	12
	Practical)		identification of hydrocarbon			
	,		prospect			

4.	4. Panel and Fence diagrams		2	
----	-----------------------------	--	---	--

Aparupa Banijee

H.O.D. Department of Geology Shahid Matangini Hazra Government General Degree College for Women Chaksrikrishnapur, Kulberia Tamluk, Purba Medinipur, Pin.- 721649