Shahid Matangini Hazra Government General Degree College for Women Teaching Assignment and Lesson Plan Department of Mathematics Academic Session: 2023-2024 (EVEN SEM) Semester: Second Course: Hons

Name of the	Title of the teaching	Dividing the assignment into	Date of	Number of	Total number of
Teacher	assignment	number of units along with	commenceme	classes	classes required
	0	detailed lesson plan as per the	nt of the	required to	to complete the
		university	assignment	complete	assignment
		syllabus	e	each unit	C
Deepankar Das	Algebra(Major-2)	UNIT-2: Equivalence	17.06.24	11	35
		relations. Functions,			
		composition of functions,			
		Invertible functions, one to			
		one correspondence and			
		cardinality of a set. Well-			
		ordering property of positive			
		integers, division algorithm,			
		divisibility and Euclidean			
		algorithm. Congruence			
		relation between integers.			
		Principles of Mathematical			
		induction, statement of			
		Fundamental Theorem of			
		Arithmetic.	10.07.04	0	
		Unit-III: Systems of linear	19.07.24	8	
		equations, row reduction and			
		echelon forms, vector			
		equations, the matrix			
		of linear systems			
		or inteal systems,			
		systems linear independence			
		UNIT 4: Definition of vector	05 08 24		
		space of Rn: introduction to	03.08.24		
		linear transformations matrix		16	
		of a linear transformation		10	
		inverse of a matrix			
		characterizations of invertible			
		matrices Subspaces of Rn			
		dimension of subspaces of			
		Rn rank of a matrix Eigen			
		values, eigen vectors and			
		characteristic equation of a			
		matrix. Cavley-Hamilton			
		theorem and its use in finding			
		the inverse of a matrix.			
Dr. Sambhu	Algebra (Major-2)	UNIT-1: Polar representation	18.06.2024	12	12
Charan Barman		of complex numbers, nth			
		roots of unity, De Moivre's			
		theorem for rational indices			
		and its applications. Theory			
		of equations: Relation			

	between roots and coefficients, transformation of equation, Descartes rule of signs, cubic and biquadratic equation. Inequality: The inequality involving AM≥ GM≥ HM, Cauchy-Schwartz inequality			
SEC-2 (MATLAB-2)	Introduction to M-file: scripts and function, flow control statements, standard arrays library functions, standard matrix library functions, User-defined function: primary function, sub- function, private function, eval function, function handles, function of functions, library functions.	20.06.24	12	22
	Importing and Exporting data, read spread sheet data, write spread sheet data, MAT-file Unit-III Unit-IV	01.08.24	10	

Semester: Second Course: General (MDS)

Name of the Teacher	Title of the teaching assignment	Dividing the assignment into number of units along with detailed lesson plan as per the university syllabus	Date of commence ment of the assignment	Number of classes required to complete each unit	Total number of classes required to complete the assignment
Deepankar Das	Algebra (Minor-2)	UNIT-1: Polar representation of complex numbers, nth roots of unity, De Moivre's theorem for rational indices and its applications. Theory of equations: Relation between roots and coefficients, transformation of equation, Descartes rule of signs, cubic and biquadratic equation. Inequality: The inequality involving AM≥ GM≥ HM, Cauchy-Schwartz inequality. UNIT-2: Equivalence relations. Functions, composition of functions, Invertible functions, one to one correspondence and	21.06.2024 26.07.24	9 08	36

		cardinality of a set. Well-		
		ordering property of positive		
		integers, division algorithm,		
		divisibility and Euclidean		
		algorithm. Congruence relation		
		between integers. Principles of		
		Mathematical induction,		
		statement of Fundamental		
		Theorem of Arithmetic.		
Dr. Sambhu	Algebra	Unit-III: Systems of linear	19.06.2024	05
Charan	(Minor-2T)	equations, row reduction and		
Barman	` ,	echelon forms, vector equations,		
		the matrix equation Ax=b,		
		solution sets of linear systems,		
		applications of linear systems,		
		linear independence.		
		UNIT-4: Definition of vector	18.07,24	10
		space of Rn:, introduction to		
		linear transformations, matrix of		
		a linear transformation, inverse		
		of a matrix, characterizations of		
		invertible matrices. Subspaces		
		of Rn, dimension of subspaces		
		of Rn, rank of a matrix, Eigen		
		values, eigen vectors and		
		characteristic equation of a		
		matrix. Cayley-Hamilton		
		theorem and its use in finding		
		the inverse of a matrix.		

Semester: Fourth Course: Hons

Name of the	Title of the	Dividing the	Date of	Number of	Total number
Teacher	teaching	assignment into	commencement of	classes required	of classes
	assignment	number of units	the assignment	to complete	required to
		along with		each unit	complete the
		detailed lesson			assignment
		plan as per the			-
		university			
		syllabus			
Deepankar	Riemann	Unit-I(Riemann		10	38
Das	Integration and	integration,			
	series of	Intermediate Value			
	functions (C8T)	theorem for			
		Integrals;			
		Fundamental	25.03.2024		
		theorem)			
		Unit-II(Improper	26.04.24	06	
		integrals)			
		Unit-III	10.05.24	10	
		(Convergence of			
		sequence of			
		functions.			
		continuity,			
		integrability Series			
		of functions.			
		Cauchy criterion			
		Weierstrass M-			
		Test.)			
		Unit-IV	17.06.24	06	
		(Fourier series)			
		(
		Unit-V(Power	01.07.24	06	
		series)			
	Multivarite	Unit-I(Functions of	27.03.2024	12	20
	Calculus(C9T)	several variables.		_	-
		limit and continuity			
		Partial			
		differentiation,			
		directional			
		derivatives, the			
		gradient,			
		optimization)	25.05.24	0.0	
		Unit-IV(Green's	26.05.24	08	
		theorem, Stoke's			
		tneorem,			
		theorem)			
				1	

	Ring Theory and Linear Algebra-I (C10T)	Unit 1(rings, subrings, integral domains, fields, Ideal)	21.03.2024	06	18
		Unit 2(Ring homomorphisms, Isomorphism theorems I, II and III, field of quotients)	16.04.24	06	
		Unit-IV (Linear transformations, , matrix representation of a linear transformation, Isomorphism)	07.05.24	06	
Dr. Sambhu Charan Barman	Multivariate Calculus(C9T)	Unit-II(Double integration, triple integration)	28.02.2023	12	20
Darman		Unit-III(vector field, divergence and curl. Line integrals)		08	
	Ring Theory and Linear Algebra-I (C10T)	Unit-III (Vector spaces, subspaces, basis and dimension)	02.03.2023	10	10
	Graph Theory (SEC-2T)	Unit-I(Basic terminologies of graphs)	09.04.24.03.2023	06	18
		Unit-II(Eulerian graph, Hamiltonian graph Representation of a graph by matrix)	02.05.24	06	
		Unit-III (TSP, shortest path, Tree Dijkstra's algorithm, Warshall algorithm)	20.06.24	06	

Semester: Fourth Course: B.Sc. General

Name of the	Title of the	Dividing the assignment	Date of	Number of	Total number
Teacher	teaching	into number of units	commencement of	classes	of classes
	assignment	along with detailed	the assignment	required to	required to
		lesson plan as per the		complete	complete the
		university syllabus		each unit	assignment
Deepankar	Differential	Rings, Integral Domain,	.25.03.2024	16	32
Das	Equations (CC-4, $DSC1DT$)	Fiels			
	DSCIDI)				
Dr. Sambhu	Differential	Groups, Cyclic groups the	26.03.2024	16	
Charan	Equations (CC-4.	general linear group GLn		10	
Barman	DSC1DT)	(R), groups of symmetries			
	,	Subgroups, Cosets, Index			
		of subgroup, Lagrange's			
		theorem, Normal			
		groups. Quotient			
		Sroups.			

Semester: Sixth Course: Hons

Name of the	Title of the	Dividing the	Date of	Number of	Total number
Teacher	teaching	assignment into	commencement of	classes required	of classes
	assignment	number of units	the assignment	to complete	required to
		along with		each unit	complete the
		detailed lesson			assignment
		plan as per the			
		university			
		syllabus			
Deepankar	Ring Theory and	Unit-I(Ring &	12.02.2024	15	45
Das	Linear Algebra-	Field)			
	II	Unit-II(Dual spaces	08.4.24	15	
	(C14T)	& Eigen Spaces)			
		Unit-III(Inner	20.05.24	15	
		product spaces,			
		Least square			
		approximation &			
		Spectral theorem)			
		Unit-I(prime		13	
		counting function,	27.03.2024		
		mear congruences,			
	Number Theory (DSE3T)	remainder theorem			
		Fermat's little			20
		theorem. Wilson's			38
		theorem)			
		Unit-II	03.05.24	12	
		(Dirichlet product,			
		Mobius Inversion			
		formula, greatest			
		integer function,			
		Euler's phi-			
		function, Euler's			
		theorem, reduced set	ī —		
		of residues)			
		Unit-III(primitive	04 06 24	13	
		roots for primes and	04.00.24	15	
		composite numbers,			
		Euler's criterion,			
		Legendre symbol			
		quadratic			
		congruence's,			
		Public key			
		encryption, RSA			
		encryption and			
		decryption)			

Dr. Sambhu	Metric Space an	d Unit-I	13.02.2024	06	
Charan	Complex	(Sequences in			
Barman	Analysis (C13T)	metric spaces)			
		Unit-II	27.02.24	10	
		(continuous			
		mapping,			
		Connectedness,			
		Compactness)			42
		Unit-III(limit,	26,04.24	06	
		continuity of			
		functions of			
		complex variable)			
		Unit-IV(Analytic	10.05.24	08	
		functions,			
		differentiation and			
		integration of			
		functions of			
		complex variable)			
		Unit-	07.06.24	07	
		V(Convergence of			
		sequences and			
		series)			
		Unit-VI(absolute	25.06.24	05	
		and uniform			
		convergence of			
		power series)			
	Mathematical	Unit-I(solution of		16	32
	Modelling	Bessel's equation	27.02.2024		
	(DSE4T)	and Legendre's			
		equation, Laplace			
		transform)	25.04.24	17	
		Unit-II(Monte	25.04.24	1 /	
		Carlo simulation			
		Simulation			
		optimization			
		modelling. Linear			
		programming			
		model, sensitivity			
		analysis)			