SHAHID MATANGINI HAZRA GOVT. COLLEGE FOR WOMEN Teaching Assignment and Lesson Plan Academic Session: 2023-24 (2nd, 4th, 6th Semester) (Even) Department of Chemistry

2nd Semester (Hons)-NEP

Name of the	Title of the	Dividing the Assignment into Number of Units along with	Date of	Number of	Total
Teacher	Teaching	detailed lesson plan as per the University Syllabus	Commencement	classes	number of
	Assignment		of the	required for	classes
			Assignment	each unit	required
Sachinath Bera	MJ2T:	Extra nuclear Structure of atom		14	45
	INORGANIC	Chemical periodicity		05	
Basudev Mandal	CHEMISTRY-I	Acid-Base reactions		12	
		Redox Reactions and precipitation reactions		14	
Sachinath Bera	MJ2P INORGANIC	Acid and Base Titrations:		30	30
And	CHEMISTRY LAB-I	1. Estimation of carbonate and hydroxide present in mixture			
Basudev Mandal		2. Estimation of carbonate and bicarbonate present in a mixture			
		3. Estimation of free alkali present in soaps/detergents.			
		Oxidation-Reduction Titrimetric:			
		1. Estimation of Fe(II) using standardized KMnO4 solution			
		2. Estimation of oxalic acid and sodium oxalate in a mixture			
		3. Estimation of Fe(II) and Fe(III) in a mixture using K2Cr2O7			
		4. Estimation of Fe(III) and Mn(II) in a mixture using			
		standardized KMnO4 solution.			
		5. Estimation of Fe(III) and Cu(II) in a mixture using K ₂ Cr ₂ O ₇ .			
		6. Estimation of Fe(III) and Cr(III) in a mixture using K2Cr2O7			
Sayanwita Panja	SEC 2P: Medicinal	Part-A: Extraction		30	45
	& Pharmaceutical	i) Extraction of eucalyptus leaf ingredient			
	Chemistry	ii) Extraction of eugenol from clove			
		iii) Extraction of nicotine from tobacco.			
		iv) Curumine from turmeric			
		v) Extraction of caffeine from tea/coffee			
Sayanwita Panja		Part-B: A project: Collection and brief introduction of at least 10		15	15
		herbal plants			

2nd Semester (Minor)-NEP

Name of the Teacher	Title of the Teaching Assignment	Dividing the Assignment into Number of Units along with detailed lesson plan as per the University Syllabus	Date of Commenceme nt of the Assignment	Number of classes required for each unit	Total number of classes required
Basudev Mandal	MI-2T: STATES OF	Physical Chemistry-I		15	45
	MATTER &	Kinetic Theory of Gases and Real gases			
	CHEMICAL KINETICS	Liquids		10	
Sachinath Bera		Solids		08	
		Chemical Kinetics		12	
Mitali Dewan	MI 2P: Physical	(I) Surface tension measurement (excluded organic solvents)		30	30
Rathin Jana	Chemistry-LAB	a) Determination of the surface tension of a liquid or a dilute			
		solution using a Stalagmometer			
		b) Study of the variation of surface tension of a detergent			
		solution with concentration			
		(II) Viscosity measurement (organic solvents excluded)			
		a) Determination of the relative and absolute viscosity of a			
		liquid or dilute solution using an Ostwald's viscometer			
		b) Study of the variation of viscosity of an aqueous solution			
		with concentration of solute			
		(III) Study the kinetics of the following reactions			
		a) Initial rate method: Iodide-persulphate reaction			
		b) Integrated rate method:			
		(i) Acid hydrolysis of methyl acetate with hydrochloric acid			
		(ii) Compare the strengths of HCl and H2SO4 by studying			
		kinetics of hydrolysis of methyl acetate			

2nd Semester (Multidisciplinary)-NEP

Name of the	Title	of the	Dividing the Assignment into Number of Units	Date of	Number	of Number	of
Teacher	Teaching		along with detailed lesson plan as per the	Commenceme	classes	classes	
	Assignment		University Syllabus	nt of the	required	to required	to
				Assignment	complete ea	ach complete t	he
		-			unit	assignment	
Sachinath Bera	MJA1/B1T	Section A:	Atomic Structure		10	20	
Basudev Mandal	(CEMP MJ101)	Inorganic Chemistry-1	Redox Reactions and precipitation reactions		10		
Mitali Dewan		Section B:	Fundamentals of Organic Chemistry		05	25	
Sayanwita Panja		Organic	Stereochemistry		10		
Rathin Jana	-	Chemistry-1	Aliphatic Hydrocarbons: Alkanes, alkenes, alkynes		10		
Sachinath Bera	MJA1/B1P	Section A:	1. Estimation of sodium carbonate and sodium		15	15	
And		Inorganic	hydrogen carbonate present in a mixture.				
Basudev Mandal		Chemistry-	2. Estimation of oxalic acid by titrating with KMnO ₄ .				
		Volumetric	3. Estimation of water of crystallization in Mohr's				
		Analysis	salt by titrating with KMnO4.				
			4. Estimation of Fe (II) ions by titrating it with				
			K2Cr2O7 using internal indicator.				
			5. Estimation of Cu (II) ions iodometrically using				
			Na2S2O3.				
Mitali Dewan	-	Section B:	1. Detection of extra elements (N, S, Cl, Br, I) in		15	15	
		Organic	organic compounds				
		Chemistry	2. Septaration of mixtures by Chromatography:				
			Measure the Rf value in each case (combination of				
			two compounds)				
			(a) Identify and Separate the components of a given				
			mixture of 2 amino acids (glycine, aspartic acid,				
			glutamic acid, tyrosine) by paper chromatography				
			(b) Identify and Separate the sugars present in the				
			given mixture by paper chromatography.				

4 th	Semester	(Hons)
------------------------	----------	--------

Name of the	Title of the	Dividing the Assignment into Number of Units	Date of	Number of	Total number of
Teacher	Teaching	along with detailed lesson plan as per the	Commencement	classes required	classes required
	Assignment	University Syllabus	of the	to complete each	to complete the
			Assignment	unit	assignment
Mitali Dewan	(C8T)	Application of Thermodynamics – II	2 nd April, 2024	15	48
Rathin Jana	Physical	Electrical Properties of molecules		15	
Basudev Mandal	Chemistry-III	Quantum Chemistry		18	
Basudev Mandal	C8P	1: Determination of solubility of sparingly soluble		30	30
And		salt in water, in electrolyte with common ions and			
Mitali Dewan		in neutral electrolyte (using common indicator)			
		2: Potentiometric titration of Mohr's salt solution			
		against standard K ₂ Cr ₂ O ₇ solution			
		3: Determination of K_{sp} for AgCl by potentiometric			
		titration of AgNO ₃ solution			
		against standard KCl solution			
		4: Study of phenol-water phase diagram			
		5: pH-metric titration of acid (mono- and di-basic)			
		against strong base	1		
Basudev Mandal	(C9T)	Inorganic Polymers	2 nd April, 2024	04	48
	Inorganic	Coordination Chemistry-I		14	
Sachinath Bera	Chemistry-III	General Principles of Metallurgy		05	
		Chemistry of s and p Block Elements		22	
		Noble Gases		03	
Sachinath Bera	C9P	Complexometric titration		48	48
and		1. Zn(II) 2. Ca(II) and Mg(II) in a mixture.			
Basudev Mandal		3. Hardness of water.			
		Inorganic preparations			
		1. Potassium diaquadioxalatochromate(III)			
		2. Tetraamminecarbonatocobalt (III) ion			
		3. Potassium tris(oxalato)ferrate(III)			
		4. Tris-(ethylenediamine) nickel(II) chloride.			
		5. $[Mn(acac)_3]$ and $Fe(acac)_3]$			

Rathin Jana	(C10T)	Nitrogen compounds	2 nd April, 2024	10	54
	Organic	Rearrangements		10	
Sayanwita Panja	Chemistry-IV	The Logic of Organic Synthesis		16	
Mitali Dewan		Organic Spectroscopy		18	
	(C10P)	Quantitative Estimations:		60	60
Rathin Jana		1. Estimation of glycine by Sörensen's formol			
Mitali Dewan		method			
		2. Estimation of glucose by titration using			
		Fehling's solution			
		3. Estimation of sucrose by titration using			
		Fehling's solution			
		4. Estimation of vitamin-C (reduced)			
		5. Estimation of aromatic amine (aniline) by			
		bromination (Bromate-Bromide) method			
		6. Estimation of phenol by bromination			
		(Bromate-Bromide) method			
		7. Estimation of formaldehyde (Formalin)			
		8. Estimation of acetic acid in commercial			
		vinegar			
		9. Estimation of urea (hypobromite method)			
		10. Estimation of saponification value of			
		oil/fat/ester			
Basudev Mandal	Skill	Pesticide Chemistry	2 nd April, 2024	30	30
	Enhancement				
	Course				
	SEC 2T			15	1.5
Basudev Mandal	SEC2P	1. To calculate acidity/alkalinity in given sample of		15	15
allu Dothin Iono		2 Propagation of simple organophosphates			
Natinii Jalla		phosphonates and thiophosphates			
		phosphonates and unophosphates			

Name of the	Г	Title of the	Dividing the Assignment into Number of	Date of	Number of	Total number of
Teacher	,	Teaching	Units along with detailed lesson plan as	Commencement	classes required	classes required
	A	ssignment	per the University Syllabus	of the	to complete each	to complete the
		•		Assignment	unit	assignment
Mitali Dewan	GE4 T	Section A:	Solutions	2 nd April, 2024	10	26
		Physical	Phase Equilibria		06	
		Chemistry-III	Conductance		06	
			Electromotive force		04	
Sayanwita Panja		Section-B:	Chemical Analysis		10	24
		Analytical and	Environmental Chemistry		14	
		Environmental				
		Chemistry				
Mitali Dewan	GE4 P	Section A:	a) Construction of the phase diagram of a		30	30
Sayanwita Panja		Physical	binary system (simple eutectic) using cooling			
		Chemistry	curves			
			b) Determination of the critical solution			
			temperature and composition of the phenol			
			water system and study of the effect of			
			impurities on it			
			c) Determination of dissociation constant of			
			a weak acid (cell constant, equivalent			
			conductance are also determined)			
			d) Perform the following conductometric			
			titrations: Strong acid vs. strong base			
			e) Potentiometric titrations of:			
			(1) Weak acid vs. strong base			
			(11) Potassium dichromate vs. Monr's salt		24	24
		Section B:	1. Total hardness of water by EDTA titration.		24	24
		Analytical and	2. PH of an unknown solution by comparing			
		Chomistry	color of a series of HCI solutions + 1 drop of			
		Chemistry	solutions + 1 drop of phonolphthaloin			
			3 To determine the rate constant for the acid			
			catalysed hydrolysis of an ester			
			4 Determination of the strength of the H_2O_2			

4th Semester (Gen)

Name of the Teacher	Title of the Teaching Assignment		Dividing the Assignment into Number of Units along with detailed lesson plan as per the University Syllabus	Date of Commencement of the Assignment	Number of classes required to complete each unit	Total number of classes required to complete the assignment
Sachinath Bera	Core-10	Section A:	Transition Elements (3d series) and f-block	2 nd April, 2024	15	50
Basudev Mandal	(DSC-1D)	Inorganic	Coordination Chemistry		10	
		Chemistry	Crystal field theory		05	
		Section B:	Kinetic Theory of Gases		08	
Basudev Mandal		Physical	Liquids		03	
Sachinath Bera		Chemistry	Solids		03	
			Chemical Kinetics		06	
Sachinath Bera	DSC-1DP	Section A:	Qualitative semimicro analysis of mixtures		40	40
		Inorganic	containing four radicals.			
		Chemistry	Basic radicals: $Pb^{2+}, Cu^{2+}, Cd^{2+}, Bi^{3+}, As^{3+/5+},$			
			$Sb^{3+/5+}$, $Sn^{2+/4+}$, $Fe^{2+/5+}$, Al^{3+} , Cr^{3+} , Ni^{2+} , $Co^{2+/3+}$,			
			$Mn^{2+/4+}$, Zn^{2+} , Ba^{2+} , Sr^{2+} , Ca^{2+} , Na^+ , K^+ , NH_4^+ ,			
			Mg^{2}			
			Acid radicals: F , CI , Br , I , BrO_3 , IO_3 , S^2 , SO_3^2 , $SO_$			
			SO_4 , S_2O_3 , SCN , $[Fe(CN)_6]^2$, $[Fe(CN)_6]$, NO NO CrO RO. ³ - RO. ³ - A ₂ O. ³ -			
			1 Estimate the amount of nickel present in a			
			given solution as his (dimethylglyoyimato)			
			nickel(II) in a given solution gravimetrically			
			2. Draw calibration curve (absorbance at λ max vs.			
			concentration) for various concentrations of a			
			given coloured compound KMnO4 and estimate			
			the concentration of the same in a given solution.			
			4. Estimation of Mg^{2+} by complexometric			
			titrations using EDTA.			
			5. Estimation of total hardness of a given sample			
			of water by complexometric titration.			

Basudev Mandal		Section B:	(I) Surface tension measurement (use of organic		42	42
Dasuuevinianuai		Physical	solvents excluded)		72	72
		Chemistry	a) Determination of the surface tension of a liquid			
		Chemistry	a) Determination of the surface tension of a figure			
			of a unuce solution using a			
			statagmometer.			
			b) Study of the variation of surface tension of a			
			detergent solution with concentration.			
			(II) Viscosity measurement (use of organic			
			solvents excluded).			
			a) Determination of the relative and absolute			
			viscosity of a liquid or dilute solution			
			using an Ostwald's viscometer.			
			b) Study of the variation of viscosity of an			
			aqueous solution with concentration of			
			solute.			
			(III) Chemical Kinetics			
			Study the kinetics of the following reactions.			
			1. Initial rate method: Iodide-persulphate reaction			
			2. Integrated rate method:			
			a. Acid hydrolysis of methyl acetate with			
			hydrochloric acid.			
			b. Saponification of ethyl acetate.			
Sachinath Bera	Skill	Analytical	Carbohydrate, Proteins, Enzymes, Lipids,	2 nd April, 2024	30	30
	Enhancement	Clinical	Hormone, Structure of DNA, Blood, Urine	I /		
	Course	Biochemistry				
	SEC 2	· ·				
Sachinath Bera	SEC2P		1. Carbohydrates – qualitative and quantitative.		28	28
And			2. Lipids – qualitative.			
Rathin Jana			3. Determination of the iodine number of oil.			
			4. Determination of saponification number of oil.			
			5. Proteins – qualitative.			
			6. Determination of protein by the Biuret			
			reaction.			
			7. Determination of nucleic acids			

6 th Semester (H	ons)				
Name of the	Title of the	Dividing the Assignment into Number of Units along with detailed lesson plan as nor the University Syllabus	Date of	Number of	Total number of
Teacher	Assignment	detailed lesson plan as per the University Synabus	of the	to complete each	to complete the
	115516innent		Assignment	unit	assignment
Basudev	(C13T)	Bioinorganic Chemistry	27 th February,2024	20	<u>60</u>
Mandal	Inorganic	Catalysis by Organometallic Compounds	5.4	10	
	chemistry-V	Organometallic Chemistry		18	
Sachinath Bera		Reaction Kinetics and Mechanism		12	
Sachinath Bera	C13P	Qualitative semimicro analysis of mixtures containing four		60	60
And		radicals.			
Basudev		Basic radicals: Pb ²⁺ , Cu ²⁺ , Cd ²⁺ , Bi ³⁺ , As ^{3+/5+} , Sb ^{3+/5+} ,			
Mandai		$Sn^{2+/4+}$, $Fe^{2+/3+}$, Al^{3+} , Cr^{3+} , Ni^{2+} , $Co^{2+/3+}$, $Mn^{2+/4+}$, Zn^{2+} ,			
		Ba ²⁺ , Sr ²⁺ , Ca ²⁺ , Na ⁺ , K ⁺ , NH ₄ ⁺ , Mg ²⁺			
		Acid radicals: F ⁻ , Cl ⁻ , Br ⁻ , I ⁻ , BrO ₃ ⁻ , IO ₃ ⁻ , SO ₃ ²⁻ , SO ₄ ²⁻ ,			
		$S_2O_3^{2-}$, SCN^- , $[Fe(CN)_6]^{3-}$, $[Fe(CN)_6]^{4-}$, NO_3^- , NO_2^- , CrO_4^- ,			
		$BO_3^{3-}, PO_4^{3-}, AsO_4^{3-}$			
		Insoluble Materials: $Al_2O_3(ig)$, $Fe_2O_3(ig)$, $Cr_2O_3(ig)$, SnO_2 , $SrSO_4$, $BaSO_4$, CaF_2 , $PbSO_4$.			
Rathin Jana	(C14T)	Molecular Spectroscopy	27thFebruary,2024	24	52
Rathin Jana	Physical	Photochemistry		12	
Sachinath Bera	Chemistry-V	Surface phenomenon		16	
	C14P	1: Determination of surface tension of a liquid using		30	30
		Stalagmometer			
Saahinath Dave		2: Determination of CMC from surface tension			
Sachinath Bera		measurements			
Allu Rathin Jana		3: Verification of Beer and Lambert's Law for KMnO ₄ and			
Natinii Jana		K ₂ Cr ₂ O ₇ solution			
		4: Study of kinetics of $K_2S_2O_8$ + KI reaction,			

		spectrophotometrically 5: Determination of pH of unknown buffer			
		spectrophotometrically			
Sayanwita Panja	DSE -3: Green Chemistry	Introduction to Green Chemistry Principles of Green Chemistry and Designing a Chemical synthesis	27 th February,20 24	48	48
		Examples of Green Synthesis/ Reactions and some real-world cases Future Trends in Green Chemistry			
Sayanwita Panja And Mitali Dewan	DSE3P	 Preparation of propene by two methods Triethylamine ion + OH- → propene + trimethyl propene + water 1-propanol ^{H2SO4, Δ}/→ propene + water Benzoin condensation using Thiamine Hydrochloride as a catalyst instead of cyanide. Solvent free, microwave assisted one pot synthesis of phthalocyanine complex of copper (II). 4. Photoreduction of benzophenone to benzopinacol in the presence of sunlight. 		36	36
Mitali Dewan	DSE-4T: Polymer Chemistry	 a) Introduction and history of polymeric materials b)Functionality and its importance c)Kinetics of Polymerization d)Crystallization and crystallinity e)Nature and structure of polymers f)Determination of molecular weight of polymers g)Glass transition temperature (Tg) and determination of Tg h)Polymer Solution i)Properties of Polymer 	27 th February,2024	54	54

Mitali Dewan	DSE4P	1. Free radical solution polymerization of styrene (St) / Methyl	42	42
And		Methacrylate		
Rathin Jana		(MMA) / Methyl Acrylate (MA) / Acrylic acid (AA).		
		2. Preparation of nylon 66/6		
		3.Redox polymerization of acrylamide		
		4. Precipitation polymerization of acrylonitrile		
		5. Preparation of urea-formaldehyde resin		
		6. Preparations of novalac resin/ resold resin.		
		7. IR studies of polymers		

6th Semester (Gen)

Name of the	Title of the		Dividing the Assignment into Number of	Date of	Number of	Total number of
Teacher	Teaching		Units along with detailed lesson plan as per	Commencement	classes required	classes required
	Assignment		the University Syllabus	of the Assignment	to complete	to complete the
					each unit	assignment
Sayanwita Panja	DSE	Green	Introduction to Green Chemistry	27 th February,2024	42	42
	1B/2B/3B	Chemistry	Principles of Green Chemistry and Designing a			
			Chemical synthesis			
			Examples of Green Synthesis/ Reactions and			
			some real-world cases			
			Future Trends in Green Chemistry			
Sayanwita Panja	DSE1BP		1. Preparation of propene by two methods		36	36
and			Triethylamine ion + OH- \rightarrow propene +			
Mitali Dewan			trimethyl propene + water			
			H2SO4, Δ			
			1-propanol — propene + water			
			2. Benzoin condensation using Thiamine			
			Hydrochloride as a catalyst instead of cyanide.			
			3. Solvent free, microwave assisted one			
			pot synthesis of phthalocyanine complex			
			of copper (II).			
			4. Photoreduction of benzophenone to			
			benzopinacol in the presence of sunlight.			
Rathin Jana	Skill	Pesticide		27thFebruary,2024	24	24
	Enhancement	Chemistry				
	Course					
	SEC 4T					
Rathin Jana	SEC4P		1. To calculate acidity/alkalinity in given		18	18
and			sample of pesticide formulations as per BIS			
Basudev Mandal			specifications.			
			2. Preparation of simple organophosphates,			
			phosphonates and thiophosphates			